Jack Johnson, P.E.

IDAS Engineering Inc.

Jack Johnson is an electrohydraulic specialist, fluid power engineering consultant, and president of IDAS Engineering Inc., Milwaukee. Contact him at jack@idaseng.com, phone (414) 236-5350, or visit www.idaseng.com.

Articles by Jack Johnson, P.E.
Analogies between hydraulic and electrical systems
Most technical people working in the fluid power industry have roots either in the mechanical realm or the electrical realm. Those who consider themselves “mechanically inclined” often struggle with understanding of electrical concepts. Likewise, those well versed in electrical science are often faced with terminology in fluid power that is inconsistent with their knowledge.
Weighing the Benefits of Creep Speed

Large positional errors can result when a programmable logic controller (PLC) selects the deceleration point. The error is caused by the scan-time delay in the digital controller, and it is directly proportional to the speed at the instant that the deceleration decision is made. To reduce this error, many open-loop motion controllers decelerate the system to a creep speed to approach the target position slowly. Thus, positioning error is made at creep speed instead of at maximum speed, so the ultimate position will be acquired more accurately.

Linearized model of a hydraulic motor

Most motion-control applications are of a critical nature — they must meet accuracy, bandwidth, or some other performance demand. The most sensible and expedient way to design such systems is to use performance requirements as the design goals at the very outset of the design process. The techniques are analytical in nature, so they require mathematical descriptions of all elements of the system. Only then can synthesis and simulation methods be applied to direct the design process toward the end result without undue trial-and-error techniques.

Integral control can correct disturbances in electrohydraulic systems
The effects of disturbances in closed-loop electrohydraulic control systems can be measured. Therefore, they can be corrected — within limits.
Integral control for electrohydraulic servosystems

To understand the function of and need for integral control, you must understand the shortcomings and limitations of the proportional electrohydraulic positioning servomechanism. A simplified, combined cutaway and block diagram is shown in Figure 1.

Calculating lost power for low-speed operation

A histogram generated as a “gedankenexperiment” for a wheel-mounted front-end loader, described in Part 1 of this article, July’s “Optimize Mobile-Equipment Control Through Statistical Analysis,” was based upon reasonable estimates of a real work process. The operating scenario proposed a relatively long distance between the load pickup pile and the load dumping point.

Optimize mobile equipment operation through statistical analysis

Stationary machinery within automated, industrial manufacturing and fabrication processes typically operates in very repetitive, measured, predictable cycles. In these environments, total lost energy over the course of a given time period, say, a day, can be measured or calculated rather easily due to regular, predictable motion cycles.

Pinpoint power-loss problems

Fluid power technology emphasizes the use of efficiencies as key figures of merit for many products across multiple marketplace segments. Such reasoning is sound, especially with the push to reduce energy consumption. However, efficiency is too simplistic a measure, and dare say, tends to be rather abused.

Testing an electrohydraulic motion control system

To demonstrate the characteristics of a motion control system, we will examine test results of a valve-controlled cylinder in a closed-loop, positional servomechanism, represented below. Otherwise known as a torque cell, the mechanism was designed for special electrohydraulic motion-control training programs.

Analogies between hydraulics and electronics
Analogies exist between hydraulic flow and electrical flow, and the molecules of fluid in a hydraulic circuit behave much like the electrons in an electrical circuit. Let’s examine analogies between pressure and voltage and between ground and the hydraulic reservoir.
Wrapping up the operating envelope

System design normally calls for a specific load to be overcome and propelled at some required velocity. This is called the design pointor design target. A further reality is that most machines are required to operate at an essentially unlimited number of operating conditions as the actuator accelerates, decelerates, and stops. When the system is designed, the design point must accommodate the absolute worst-case operating point expected over the entire lifetime of the machine.

Component compatibility

System design requires that components supply pressure adjusted so that the operating envelope encompasses the worst case force-speed operating point. An infinite number of combinations exists that will accomplish this, so some other strategies must be applied to reduce the number of possibilities.

Hydromechanical resonant frequency and cylinder speed 1

The hydromechanical resonant frequency (HRF) of a valve-cylinder circuit is an interesting concept and an important value to know. If a cylinder is stroking, and its control valve suddenly shifts to block flow, the cylinder and its load will vibrate, usually with considerable noise and sometimes with considerable violence. This is HRF in action. The noise arises from the resonance that exists when the kinetic energy of the load mass and the potential energy stored in the hydraulic fluid’s compressibility are exchanged.

New blog posts

Subscribe to the Hydraulics & Pneumatics Newsletter!

Keep up with the latest news with our newsletter

Hydraulics & Pneumatics Bookstore

Our online bookstore features most of the industry’s most popular and classic technical training books available.  

Click below to browse the bookshelves today!

Follow Us