Digga dubs itself Australia’s premier attachment manufacturer. But these aren’t just empty words. Established in 1981, Digga pioneered pendulum drilling in Australia and is Australia’s leading manufacturer of planetary drive boring and trenching attachments for construction and other heavy industries. Digga offers more than 80 different attachments, an extensive line of replacement parts, and service.

The high power capability, compact design, and reliability of Digga’s equipment is typified in its I-Drive system that mates with Digga’s high torque planetary gearboxes. The I-Drive is designed to fit 18 to 50 ton excavators for installing ground screw anchors, core barrelling, foundation drilling, and similar high-torque operations.

The I-Drive can take full advantage of the hydraulic flow capabilities of an excavator producing up to 1000 lpm to deliver a maximum torque of 300,000 Nm and 240 kW. That’s actually more hydraulic power than most excavators can provide, so the I-Drive has a built-in margin of safety while delivering up to 300% greater productivity than currently available systems.

A Digga official explained, “I-Drive technology allows us to harness the total available hydraulic power of the host machine, essentially increasing productivity up to 300% over previously available drive systems. We like to think of the design as being ‘bullet-proof’ and immune to operator errors that can damage power heads that aren’t as robust as the I-Drive.”

Rugged, simple, compact

Digga set out to design a compact, high-capacity power head that was significantly more tolerant of abuse than others on the market. But they also wanted to provide the additional benefit of substantially higher productivity.

A power head is attached to the boom of an excavator to generate high-torque rotation for the task at hand. Conventional power head designs require three or more hose connections (including case drains), which make them difficult to attach and set up in the field. They also require an operator to modulate the excavator’s hydraulic output to keep it within the typical 250 lpm flow common to these units.  

Digga designed the I-Drive to survive the heavy-duty use and potential abuse that construction equipment is usually subjected to. One way to achieve this goal is to keep the design simple. Digga’s I-Drive power head requires no complex hose, valve, or filtration arrangements. And because its motors have no case drain, the I-Drive does not require a third hydraulic line, which conventional drive heads do. In service, the design has been immune to operator errors that can damage less robust power heads.

Digga’s I-Drive uses valves and motors from Eaton Hydraulics to meet its design challenges. It is designed around multiple Eaton 6000 Series disc valve motors, resulting in a compact unit that is extremely tolerant of contamination. Henry J. Szota, of Eaton Hydraulics Group, Tullamarine, Vic., Australia,  explained that the radial- and axial-piston motors widely used for this application typically tolerate contaminant particles sized to about 15-25 µm or 5-10 µm, respectively. However, the 6000 Series motors can operate with contaminant particles as large as 25 to 40 µm.

The compact 6000 Series motors use Eaton’s Geroler based design, whereby rolls seal the space between a rotating “star” and stationary gear ring. A rotary disc directs fluid into the void between the star and ring, causing the star to rotate and giving the motor its name.

Szota revealed, “This design accommodates high flow rates and high pressures while providing high starting and low-speed torque characteristics. The Geroler design is inherently more efficient than standard gerotor designs for two reasons. First, the rollers provide tighter sealing between the moving parts. Second, the rolling action creates less friction than the sliding motion of gerotor designs.”

Digga engineers also designed a screw-in cartridge valve manifold system to control flow to the I-drive four disc valve motors. The manifold simplifies operation by allowing the operator to selectively engage and disengage motors to provide variable speed and torque.