An open electrical switch blocks current, whereas a closed switch conducts. A closed hydraulic valve blocks flow, but an open valve allows flow. These are clearly contradictory analogies that are often confounding to those who are seeking to cross-fertilize, so to speak, and learn the other language and concepts. There is a method to this madness, or at least an explanation, that belongs in the pantheon of “No wonder we don’t understand each other.”

The open-closed explanation requires at a least rudimentary understanding of both electrical and hydraulic circuit diagrams. Figure 6 shows a battery symbol inside the envelope labeled Multicell battery. The battery symbol itself consists of alternating short and long horizontal lines centered along a vertical line. Nominally speaking, the number of short-long pairs indicates the number of cells in the battery. However, no hard-and-fast rule exists for this matter. As shown, and with that interpretation, our battery would have six cells. If each cell produced, say, 2 V, this would be a 12-V battery because all the cells are connected in series. It could be a typical lead-acid automotive battery, or it could be some dry cells such as the familiar AA size that have become commonplace in most portable electronic devices. Many characteristics are not conveyed in the battery symbol. For example, unless we know the value for E, we don’t know the battery voltage. Also, the rectangular envelope is not part of the battery symbol. It was included for clarifying the boundaries of the battery.

The battery supplies power for the circuit. Its voltage gradient motivates any of the loosely bound conductors’ electrons to move away from the negative terminal and head toward the positive terminal. The electrons are charged particles — that is, they hold an electrical charge. As electrons move through the circuit, their motion, collectively, is called electrical current. Electrical charges in motion constitute electrical current. Quantification of current is made with the international standard called the ampere. The ampere is the average motion of 6.241 × 1,018 electrons (1 coulomb) in 1 sec. We cannot count such a number, so other means are used for standardizing the international unit of the ampere.

Figures 7 and 8 are similar to Figure 6, but they have a switch added to the circuit. The switch in Figure 7 is in the closed position. This means it will conduct, so electrical current will exist through the circuit to the load. Figure 8, however, shows the switch in its open position. The source of the confusion comes from the fact that a complete path must exist for electrical current to exist. All electrical circuits must close on themselves so that electrons can travel around the circuit in a never-ending way. We say that the circuit is closed. Only then will there be a current.

The continuous current path has been broken in Figure 8 because of the state of the switch. We say that the circuit is open, and there can be no current. So, the terms “open” and “closed” are really circuit references, not switch references. However, in the sloppiness that sometimes crowds out common sense in the jargon, we have applied circuit terms to the switch. Thus, an open switch blocks while a closed switch conducts. The terms continue to be applied in the electrical world and are even accepted as perfectly normal and correct. But to those folks who are arriving from a hydraulic background, it can be confusing. Don’t try to fight it. It’s ingrained in the language.

### Polarity and current

Referring back to the basic circuit, we know from the battery symbol that the negative terminal is the upper one, conveyed in two ways. First, there is a minus sign at the upper terminal and a plus sign at the bottom. Second, it is standard convention that the short horizontal line always identifies the negative side, and the long line is the positive side of any battery symbol. The negative terminal is called the cathode and the positive terminal the anode. These are universal terms that apply to anything requiring or producing voltage of a specified polarity, either plus or minus.

The battery is connected to a load through external wiring. If this is your car, the load represents every electrical device inside your car. It includes lights, radio, motors, rear-window defogger, and so on. From a concept point of view, though, the external circuitry provides a completed path for electrical charges to travel around the circuit.

Charged electrical particles in motion produce a magnetic field that surrounds the space around the conductor carrying the current. For example, if current exists in only one direction, it will affect a compass placed in the vicinity of the conductor. In addition, a force of attraction exists between two current-carrying conductors in close proximity to each other, Figure 9. That force can be measured to determine when a standard ampere exists in the conductors. The calibration must be done in a vacuum, and relative distances must be standardized and known, but it avoids the tedium of counting electrons. More importantly, the procedure relies on the conventional and internationally standardized physical quantities of force and length.