Hydraulics & Pneumatics - Hydraulics & Pneumatics is the leading international technical resource for fluid power http://hydraulicspneumatics.com/rss.xml en Position-Sensing Options for Air Cylinders http://hydraulicspneumatics.com/cylinders-actuators/position-sensing-options-air-cylinders <div class="field-deck"> Sponsored by Balluff </div> <div class="node-body article-body"><p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/Balluff_262x37px.jpg" style="width: 200px; height: 28px; float: right;" />THE BENEFITS OF using air cylinders in factory automation are many, but today&rsquo;s automation solutions demand electronic feedback for parts counting, position verification, and other functions. Choosing a position feedback solution for air cylinders presents a challenge because the best solution should surpass the speed and life of the cylinder itself.</p> <p>Download <em><strong>FAQs on Position-Sensing Options for Air Cylinders</strong></em> sponsored by <strong>Balluff</strong> to help explain some of the most common concerns surrounding air cylinders, we present some common questions and direct answers.</p> <script type="text/javascript"> document.write('\ <iframe style="height:675px; width: 600px" frameBorder="0" scrolling="no"\ src="http://pages.hydraulicspneumatics.com/HP_Digital_Balluff_P-SensingOptAirCyl_WP_DC_082216?partnerref=' + getParameterByName("partnerref") + "&elq=" + getParameterByName("elq2") + "&code=" + getParameterByName("code") + "&PK=" + getParameterByName("PK") + "&PR=" + getParameterByName("PR") + '"></iframe>'); function getParameterByName(name) { var match = RegExp('[?&]' + name + '=([^&]*)').exec(window.location.search); if (match == null) return ""; return match && decodeURIComponent(match[1].replace(/\+/g, ' ')); } </script></div> http://hydraulicspneumatics.com/cylinders-actuators/position-sensing-options-air-cylinders#comments Design FAQs Cylinders & Actuators Wed, 31 Aug 2016 16:23:00 +0000 39781 at http://hydraulicspneumatics.com Preparing for the Internet of Things at IoT Emerge http://hydraulicspneumatics.com/news/preparing-internet-things-iot-emerge <div class="node-body article-body"><p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/04/IoTemerge.png" style="width: 280px; height: 77px; margin: 3px; float: left;" />For companies trying to stay on the cutting edge of manufacturing, whether by adopting new practices on the factory floor or tweaking products to meet industry standards, it is important to be up to date on one of the latest&mdash;the Internet of Things (IoT).&nbsp;</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/other-technologies/smart-fluid-power-internet ">Smart Fluid Power on the Internet </a></p> <p><a href="http://hydraulicspneumatics.com/pneumatic-valves/smart-pneumatics-already-iot-ready ">Smart Pneumatics Already IoT-Ready</a></p> <p><a href="http://hydraulicspneumatics.com/other-technologies/iot-intends-revolutionize-hydraulics-and-pneumatics">The IoT Intends to Revolutionize Hydraulics and Pneumatics</a></p> </div> <p>Companies, including those in the fluid power sector like Festo, Bosch Rexroth, and Sun Hydraulics (see&nbsp;<a href="http://machinedesign.com/iot/impact-iot-fluid-power-systems" target="_blank"><em>The Impact of IoT on Fluid-Power Systems</em></a>)&nbsp;are increasingly adopting and producing electrohydraulic drives that supply continuous data streams for preventative maintenance. In addition, city planners are calling for sensor-equipped buildings and factories to ensure that they meet efficiency standards.</p> <p>These are some of the topics that will be featured at IoT Emerge, a conference for educating engineers about security, connectivity, and other technologies surrounding the IoT. It will take place on November 2-4 at McCormick Place in Chicago. The event is hosted by the IoT Institute, a trade publication owned by Penton Media, which also runs Hydraulics &amp; Pneumatics.</p> <p>Yesterday, IoT Emerge announced its keynote speakers. With a background in robotics, and first-hand expertise in hacking Wi-Fi passwords, Inventor Pablos Holman will be the first, addressing one of the most common fears that manufacturers face when implementing the IoT&mdash;cybersecurity and hacking. In <em>Hacking the Future</em>, Holman will discuss strategies for protecting IoT technology.</p> <p>Timothy C.K. Chou, a former president of Oracle, will speak on how he grew the Oracle Cloud business. Author of <em>The End of Software</em>, a book about moving applications to the Cloud, he currently serves on the board of cloud-services company, Blackbaud. He recently published his book, <em>Precision: Principals, Practices and Solutions for the Internet of Things</em>.&nbsp;His keynote address is called Toward a Precision Planet.</p> <p>Other speakers include Eric Williams, Avnet&rsquo;s lead strategist Internet of Things, will discuss his plans for designing and developing &nbsp;IoT offerings. Tamara McCleary, an IBM Futurist, will discuss her outlook on the future of IoT and connectivity. McCleary is ranked by LeadTail as the third &nbsp;<br /> most mentioned person on Twitter by Chief Marketing Officers in 2015, and as one of the &nbsp;Top 25 AI/Machine Language, Top 50 Big Data, Top 50 Blockchain, Top 50 Digital Transformation and Top&nbsp;100 IoT influencers in 2015 &amp; 2016 by Onalytica.</p> <p><strong><a href="http://www.iotemerge.com/iot16/Public/Content.aspx?ID=1064526&amp;sortMenu=121000" target="_blank">Early-bird registration </a>ends Sunday, August 28.&nbsp;</strong></p> </div> http://hydraulicspneumatics.com/news/preparing-internet-things-iot-emerge#comments News Events Thu, 25 Aug 2016 22:02:00 +0000 39811 at http://hydraulicspneumatics.com Courtesy of NewsX How 'Power Beyond' Works [Video] http://hydraulicspneumatics.com/blog/how-power-beyond-works-video <div class="node-body blog-body"><p>During a recent conversation I had with Dr Marian Tumarkin, co-author of &#39;<a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=hmesp">Hydraulics Made Easy</a>&#39; and &#39;<a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=ahcsp">Advanced Hydraulic Control</a>&#39;, we discussed the reasons why newbies to the hydraulics biz often have trouble grasping the concept of &#39;Power Beyond&#39;.<br /> <br /> Marian, who has a lot more classroom teaching experience than I, made the point that while students tend to grasp the circuitry easily enough, they have trouble relating it to the actual configuration of the physical valve.<br /> <br /> In a nutshell, Power Beyond is a facility in the outlet section of a mobile directional control valve, which enables the pressure bypass gallery to be isolated from the tank gallery.<br /> <br /> By doing this, the pressure gallery can then be carried over or continued on to the P port of another directional control valve (DCV). Hence the term Power Beyond (the first DCV) and its other name: High Pressure Carry Over (HPCO).<br /> <br /> Some time ago I recorded a simulation video for &#39;<a href="http://www.hydraulicsupermarket.com/pro-club.html">Hydraulics Pro Club</a>&#39; which explains the configuration of Power Beyond in detail. And I&#39;ve just posted the first 10-minutes of it on YouTube.<br /> <br /> So if there are any gaps in your understanding of Power Beyond, <a href="http://www.hydraulicsupermarket.com/powerbeyond.html"><strong>set aside 10-minutes of your day and watch the video here</strong></a>.</p> </div> http://hydraulicspneumatics.com/blog/how-power-beyond-works-video#comments Hydraulics At Work Mon, 22 Aug 2016 23:06:00 +0000 39771 at http://hydraulicspneumatics.com Streamlining the Fluid-Power Supply Chain with Distributor Software http://hydraulicspneumatics.com/blog/streamlining-fluid-power-supply-chain-distributor-software <div class="node-body blog-body"><p><a href="http://www.tribute.com/" target="_blank">Tribute Inc</a>., a provider of business-management software for industrial distribution marketplaces, releases its newest structure query language (SQL)-based software, TrulinX version 15.3, partnering with several major manufacturers to streamline the supply chain for fluid-power, motion-control, and automation distributors.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/news/motion-control-supplier-offers-new-tool-suite-part-website-relaunch">E-Commerce Website Lends a Hand to Oil Cooler Distribution </a></p> <p><a href="http://hydraulicspneumatics.com/blog/custom-built-hydraulics-distributor-ipad-app">Custom-built hydraulics distributor iPad app</a></p> <p><a href="http://hydraulicspneumatics.com/blog/training-available-distribution-software">Training available on distribution software</a></p> </div> <p><a href="http://www.tribute.com/" style="font-size: 12.8px; line-height: 20px; text-decoration: underline;" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/04/Trulinxlogo_NEW%206%20inch%20150.jpg" style="margin: 3px; font-size: 12.8px; width: 350px; height: 206px; float: left;" /></a></p> <p>The software caters to eight major manufacturers in particular. With the new software, Bosch Rexroth distributors can send point-of-sales reports and rebate information to Bosch Rexroth directly from the TrulinX system. Distributors for Eaton and Parker Hannifin Corp. can also take advantage of these distribution tools. Other software features can be used to simplify the business procedures of Dixon, Gates, Garlock, Pall, and Sun Hydraulics distributors.</p> <p>TrulinX 15.3 features also include &ldquo;Sales Territory Assignment Inquiry&rdquo;, which enables distributors to see all available territory assignments for a customer, and keep track of the territory assigned to an order or line on any quote. Users can also add freight codes&nbsp;for regular shipments and dropships by altering several variables including location, customer, and customer ship-to.</p> <p>Available for download from TrulinX&rsquo;s&nbsp;<a href="http://www.trulinx.com/site.cfm/members-area/downloads/releases-patches.cfm" target="_blank"><strong>Software Releases and Patches</strong></a>&nbsp;page, TrulinX 15.3 also aids distributors in creating Pro-Forma invoices, sending remittance reports to vendors via EDI, and merging and renaming customers. It also includes the toolset for creating acceptable text files for&nbsp;ACH payments&nbsp;in the NACHA Block-10 format.</p> </div> http://hydraulicspneumatics.com/blog/streamlining-fluid-power-supply-chain-distributor-software#comments News Fluid Power Talk Mon, 22 Aug 2016 14:40:00 +0000 39761 at http://hydraulicspneumatics.com New Line of Solenoid Valves Outperforms Previous Models http://hydraulicspneumatics.com/hydraulic-valves/new-line-solenoid-valves-outperforms-previous-models <div class="node-body article-body"><p>With an eye for directional control, pressure control, and flow control in space-saving mobile applications,&nbsp;Sun Hydraulics released its&nbsp;first&nbsp;generation&nbsp;of solenoid-operated digital logic valves in the DLV family.&nbsp;The&nbsp;DLVB&nbsp;two-way directional spool&nbsp;valves&nbsp;offer&nbsp;a&nbsp;response time of 10 ms, quickly transitioning between on and off states with&nbsp;minimal leakage.&nbsp;This&nbsp;is twice as fast as Sun&#39;s&nbsp;DAAA&nbsp;solenoid-operated directional spool valves,&nbsp;and four times faster than the&nbsp;DAAL.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/hydraulic-valves/versatile-valve-rates-10-sections ">Versatile Valve Rates a 10&mdash;Sections, That Is</a></p> <p><a href="http://hydraulicspneumatics.com/blog/why-solenoid-coils-hydraulic-valves-burn-out">Why Solenoid Coils on Hydraulic Valves Burn-Out </a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-pump-displacement-controlled-solenoids">Hydraulic Pump Displacement Controlled by Solenoids</a></p> </div> <p>The&nbsp;DLVB&nbsp;digital logic valve has a&nbsp;pressure rating of 5000 psi at 0.25 gpm. It&nbsp;comes in&nbsp;a small&nbsp;package measuring&nbsp;2.2-in.&nbsp;high and&nbsp;weighing a mere&nbsp;2 oz.&nbsp;Equipped with a micro-solenoid and top-mounted M12 connector,&nbsp;it&nbsp;can be used to drive down the size of assemblies.&nbsp;</p> <p>Sun also highlights the new product&#39;s low power rating. Optimized magnetics and use of a micro-solenoid means the DLV coil draws only 2 W hold (typical) and 15 W peak (typical) &mdash;up to a 90% power savings over the standard DAAL with a 22-W coil.&nbsp; That means the DLV offers higher performance with a lower current draw and lower heat generation.&rdquo;</p> <p>The product launch also includes four versions with 12- or&nbsp;24-Vdc&nbsp;coils in normally-open or normally-closed configurations. More product specifications and related information can be found on&nbsp;the&nbsp;<a href="http://www.sunhydraulics.com/model/DLVB/XHNM12" target="_blank">DLVB&nbsp;product page</a>, and in the&nbsp;parameter chart below.&nbsp;</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/04/Capture.PNG" style="width: 582px; height: 854px; margin: 3px;" title="Courtesy of Sun Hydraulics " /></p> </div> http://hydraulicspneumatics.com/hydraulic-valves/new-line-solenoid-valves-outperforms-previous-models#comments Hydraulic Valves Thu, 18 Aug 2016 14:12:00 +0000 39751 at http://hydraulicspneumatics.com <p>Sun&#39;s smallest digital logic valve targets mobile apps.&nbsp;</p> August 2016 http://hydraulicspneumatics.com/hydraulics-pneumatics/2016-08-18 <div class="node-body magazine_issue-body"></div> <fieldset class="fieldgroup group-mag-teasers"> <div class="field-mag-teaser"> <a href="/air-compressors/fluid-power-professionals-invited-attend-imts">Fluid Power Professionals Invited to Attend IMTS </a> <a href="/other-technologies/synchronizing-metals-press-yields-perfect-parts">Synchronizing a Metals Press Yields Perfect Parts</a> <a href="/heat-exchangers/beat-heat-oil-cooler">Beat the Heat with an Oil Cooler</a> </div> </fieldset> <fieldset class="fieldgroup group-publication-info"><legend>Publication Info</legend> </fieldset> Thu, 18 Aug 2016 04:00:00 +0000 39791 at http://hydraulicspneumatics.com How To Calculate Hydraulic Cylinder Efficiency http://hydraulicspneumatics.com/blog/how-calculate-hydraulic-cylinder-efficiency <div class="node-body blog-body"><p>With modern sealing technology, the volumetric efficiency (leakage losses) of a hydraulic cylinder in good condition approaches 100%. But the mechanical-hydraulic efficiency of a cylinder varies with seal type and the tolerances between the piston-rod and its wear bands.<br /> <br /> Recall that mechanical-hydraulic efficiency refers to the amount of force lost due to mechanical and fluid friction. In a cylinder, these losses are due to friction between the piston-rod and its wear bands and seals, and the friction of the fluid as it&#39;s ejected from the return side of the cylinder at the required velocity. In practice, fluid friction is not significant, provided the cylinder&#39;s ports and its connections are adequately sized.<br /> <br /> For a single-rod cylinder when extending, mechanical-hydraulic efficiency is typically 95%, and 85% to 90% when retracting. The difference between extension and retraction reflects the fact that mechanical/hydraulic friction is nearly constant, and it therefore represents a greater percentage of available force when the cylinder is retracting--due to the smaller effective area of the rod-end annulus.<br /> <br /> For example, consider a single-rod cylinder with an area ratio (piston to annulus) of 2:1. If piston force (during extension) is 10,000 lbf (44 kN) and annulus force (during retraction) is 5,000 lbf (22 kN), and losses due to mechanical and fluid friction are 500 lbf (2.2 kN) constant. Then:<br /> <br /> Mechanical-hydraulic efficiency during extension is:<br /> 1 - (500/10000) = 1 - 0.05 = 0.95 = 95%<br /> <br /> And mechanical-hydraulic efficiency during retraction is:<br /> 1 - (500/5000) = 1 - 0.1 = 0.90 = 90%<br /> <br /> Overall efficiency is simply the product of volumetric and mechanical/hydraulic efficiency. In a modern hydraulic cylinder, where volumetric efficiency approaches 100%, overall efficiency equals mechanical/hydraulic efficiency: 0.95 x 1 = 0.95 = 95%.<br /> <br /> <strong>Are you making any of <em>these</em> mistakes with your hydraulic equipment?</strong> To find out for sure, <a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=smr"><strong>get &quot;Six Costly Mistakes Most Hydraulics Users Make... And How You Can Avoid Them!&quot; available for FREE download here</strong></a>.</p> </div> http://hydraulicspneumatics.com/blog/how-calculate-hydraulic-cylinder-efficiency#comments Hydraulics At Work Mon, 15 Aug 2016 22:51:00 +0000 39731 at http://hydraulicspneumatics.com Compact Decentralized Hydraulic System for Highly Dynamic Movements http://hydraulicspneumatics.com/hydraulic-pumps-motors/compact-decentralized-hydraulic-system-highly-dynamic-movements <div class="field-deck"> Sponsored by Hoerbiger </div> <div class="node-body article-body"><p><img alt="" src="/site-files/machinedesign.com/files/uploads/2016/08/hoerbiger_logo_claim_181x76.jpg" style="width: 181px; height: 76px; float: right;" />What are the benefits of designing with decentralized hydraulic systems? What components do you need for a decentralized hydraulic system? What are the benefits and advantages of using a servo driven hydraulic system? What industries benefit from a decentralized hydraulic system?&nbsp;</p> <p>Download <em><strong>FAQs on Compact Decentralized Hydraulic System for Highly Dynamic Movements</strong></em> sponsored by <strong>Hoerbiger</strong> to get the answers to these questions and more.</p> <script type="text/javascript"> document.write('\ <iframe style="height: 1100px; width: 100%; border:0;” frameBorder="0" scrolling="no"\ src="http://pages.machinedesign.com/MACD_Digital-Hoerbiger_CompactDecentralizedHydraulic_WP_JR_081016?partnerref=' + getParameterByName("partnerref") + "&elq=" + getParameterByName("elq2") + "&code=" + getParameterByName("code") + "&PK=" + getParameterByName("PK") + "&PR=" + getParameterByName("PR") + '"></iframe>'); function getParameterByName(name) { var match = RegExp('[?&]' + name + '=([^&]*)').exec(window.location.search); if (match == null) return ""; return match && decodeURIComponent(match[1].replace(/\+/g, ' ')); } </script></div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/compact-decentralized-hydraulic-system-highly-dynamic-movements#comments Construction Design FAQs Other Industries Hydraulic Pumps & Motors Mon, 15 Aug 2016 14:01:00 +0000 39661 at http://hydraulicspneumatics.com Principios Ingenieriles Básicos: Intercambiadores de Calor http://hydraulicspneumatics.com/blog/principios-ingenieriles-b-sicos-intercambiadores-de-calor <div class="node-body blog-body"><p class="rtejustify">Los sistemas hidr&aacute;ulicos utilizan uno de los dos m&eacute;todos de control de carga: el m&eacute;todo de p&eacute;rdida de energ&iacute;a, en el cual flujo hacia los actuadores se controla mediante el uso de v&aacute;lvulas, o el m&eacute;todo de control de volumen, en el cual el desplazamiento de una bomba variable establece el flujo hacia los actuadores. A pesar que sistemas con bombas de desplazamiento variable son m&aacute;s eficientes, generalmente son m&aacute;s costosas&nbsp; y presentan un tiempo de reacci&oacute;n m&aacute;s lento que los sistemas de caudal fijo utilizando v&aacute;lvulas servo o proporcionales.</p> <p class="rtejustify">La mayor&iacute;a de los sistemas de hidr&aacute;ulica industrial son dise&ntilde;ados utilizando el sistema de p&eacute;rdida de energ&iacute;a. Tales sistemas presentan un costo inferior y tienen una mejor respuesta debido a que la energ&iacute;a del mismo est&aacute; disponible en todo momento. Como la eficiencia es pobre, la p&eacute;rdida de energ&iacute;a como calor puede exceder la potencia mec&aacute;nica generada en el sistema. Por ejemplo, inclusive sistemas electrohidr&aacute;ulicos con v&aacute;lvulas servo o proporcionales dise&ntilde;ados correctamente convierten del 60-80% de la potencia de entrada en calor. Sistemas convencionales bien dise&ntilde;ados pueden generar p&eacute;rdidas en calor del 20-30%.</p> <p class="rtejustify">Parte del calor generado es deseable para llevar al aceite a temperatura de operaci&oacute;n &oacute;ptima. El aceite fr&iacute;o presenta una viscosidad superior al caliente, por lo que si se mantiene el aceite a 100F en un sistema dise&ntilde;ado para 140F implicar&iacute;a una din&aacute;mica sacrificada (respuesta m&aacute;s lenta), y ca&iacute;da de presi&oacute;n excesiva. Cuando se arranca un sistema en una ma&ntilde;ana fr&iacute;a de invierno por ejemplo, se debe permitir que el aceite se caliente hasta que alcance una temperatura en la cual el calor generado es el mismo al irradiado a la atm&oacute;sfera o a trav&eacute;s de cualquier otro medio de intercambio de calor.</p> <p class="rtejustify">Si el calor generado excede la tasa de disipaci&oacute;n, puede que se cocine el mismo, se inicie una descomposici&oacute;n, se forme un esmaltado en la superficie de los componentes del sistema, y se inicie el deterioro de los sellos. Un exceso de calor crea problemas en sistemas hidr&aacute;ulicos tarde o temprano. Mucho calor desintegra al aceite, da&ntilde;a sellos y rodamientos, e incrementa el desgaste en bombas y otros componentes. La soluci&oacute;n a estos problemas consiste en la inclusi&oacute;n de un intercambiador de calor correctamente dimensionado como un componente esencial del sistema.</p> <p class="rtejustify"><strong>Termodin&aacute;mica</strong></p> <p class="rtejustify">El calor es una forma de energ&iacute;a que migra de una regi&oacute;n a la otra cuando el diferencial de temperatura existe entre las regiones (transferencia de calor). El flujo se produce naturalmente desde la regi&oacute;n a temperatura m&aacute;s alta, hacia la m&aacute;s fr&iacute;a. La tasa de transferencia es importante en determinar cuanto puede ser removido del sistema en un tiempo determinado. Cuando la tasa de transferencia de calor de un intercambiador es alta, la remoci&oacute;n de calor es mucho m&aacute;s r&aacute;pida independientemente del tama&ntilde;o del mismo.</p> <p class="rtejustify">La ecuaci&oacute;n clave para cualquier intercambiador de calor es la siguiente:</p> <p class="rtejustify"><em>q</em>&nbsp;= U X A X &Delta;T</p> <p class="rtejustify">Donde:</p> <p class="rtejustify"><em>q</em>&nbsp;es la tasa de transferencia de calor en BTU/hr,<br /> U ies el coeficiente de transferencia de calor en BTU/hr-ft<sup>2</sup>-&deg; F,<br /> A ies el area de supercicie de transferencia en ft<sup>2</sup>, y<br /> &Delta;T es el diferencial de temperature en &deg;F.</p> <p class="rtejustify">Estos tres factores var&iacute;an de acuerdo al dise&ntilde;o espec&iacute;fico del intercambiador y la aplicaci&oacute;n en cuesti&oacute;n. Al evaluarla nos damos cuenta que al aumentar cualquier factor a la derecha incrementa la tasa de transferencia de calor en proporci&oacute;n directa. Al duplicar el &aacute;rea de superficie en contacto con el fluido en cuesti&oacute;n, duplica la tasa de transferencia. Al aumentar el diferencial de temperatura entre el aceite hidr&aacute;ulico y el enfriador por 50%, aumenta la tasa de transferencia en un 50%.</p> <p class="rtejustify">El calor se disipa de un sistema a trav&eacute;s de convecci&oacute;n&nbsp; natural y forzada. La natural ocurre cuando el calor se mueve desde los componentes del sistema a la atm&oacute;sfera que los rodea por un diferencial de temperatura. En sistemas hidr&aacute;ulicos peque&ntilde;os, las temperaturas son generalmente m&aacute;s bajas que en los m&aacute;s grandes, y la transferencia de calor del aceite a las tuber&iacute;as y otros componentes generalmente provee suficiente enfriamiento.</p> <p class="rtejustify">Si la convecci&oacute;n natural no es suficiente para remover el calor del sistema, se debe entonces instalar un intercambiador de calor. Este utiliza convecci&oacute;n forzada para efectuar la remoci&oacute;n. Otra forma de transferencia de calor, radiaci&oacute;n, puede ocurrir, pero su efecto es menor y generalmente puede ser despreciado. Generalmente se requiere de un intercambiador de calor en un sistema hidr&aacute;ulico cuando:</p> <ul> <li class="rtejustify">Se requiere una limitaci&oacute;n espec&iacute;fica en la temperatura del aceite para estabilizar su viscosidad,</li> <li class="rtejustify">El tiempo muerto del ciclo es considerablemente m&aacute;s grande que el ciclo de trabajo, especialmente en sistemas con bombas de desplazamiento fijo,</li> <li class="rtejustify">Existe un historial de problemas relacionados con aceite caliente en el sistema.</li> </ul> <p class="rtejustify"><strong>Mecanismos de Transferencia de Calor</strong></p> <p class="rtejustify"><a href="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2014/04/Fig1_3.png" target="_self"><img alt="" src="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2014/04/Fig1_3.png" style="width: 300px; height: 441px; margin: 10px; float: right;" title="Figura 1: Intercambiadores de calor de uno, dos y cuatro pasos." /></a>El coeficiente de transferencia de calor U, est&aacute; compuesto de varios mecanismos. El primero es la transferencia por convecci&oacute;n desde el fluido caliente hacia las paredes que lo separan del fluido fr&iacute;o o el aire. Esto representa la resistencia t&eacute;rmica del fluido caliente, la cual depende primordialmente de propiedades f&iacute;sicas y t&eacute;rmicas del fluido. El flujo turbulento y alta velocidad mejoran la tasa de transferencia de calor.</p> <p class="rtejustify">El segundo mecanismo es la conductividad t&eacute;rmica a trav&eacute;s de las paredes del tubo. La mayor&iacute;a de los intercambiadores de calor est&aacute;n fabricados de cobre o aleaciones de aluminio que presentan una alta conductividad t&eacute;rmica.</p> <p class="rtejustify">El tercer mecanismo es la convecci&oacute;n del calor desde las paredes del tubo hacia el fluido fr&iacute;o en el mismo. Este act&uacute;a de la misma manera que la resistencia t&eacute;rmica del fluido caliente. El uso de patrones de flujo multipaso permite el aprovechamiento de&nbsp; la velocidad del fluido y turbulencia para aumentar los valores de U.</p> <p class="rtejustify">Otras condiciones que afectan la tasa de transferencia de calor son los de ensuciamiento, que pueden ocurrir en ambos lados del serpent&iacute;n a trav&eacute;s del tiempo. Cuando un fluido deposita material o minerales en las paredes limitantes, estas se van ensuciando. La capa que se forma:</p> <ul> <li class="rtejustify">Act&uacute;a como un aislante,</li> <li class="rtejustify">Aumenta el grosor espec&iacute;fico del fluido, y</li> <li class="rtejustify">Reduce la velocidad del fluido cerca de las paredes del tubo.</li> </ul> <p class="rtejustify">A medida que se hace m&aacute;s gruesa, la transferencia de calor es reducida. Puede que se haga necesaria una limpieza mec&aacute;nica o qu&iacute;mica cuando dep&oacute;sitos en exceso degradan la eficiencia del intercambiador de calor.</p> <p class="rtejustify"><strong>Configuraciones de Tubos de Paso</strong></p> <p class="rtejustify">Los intercambiadores de calor est&aacute;n disponibles de 1, 2, y 4 pasos, como se muestra en la Figura 1.&nbsp; Los m&uacute;ltiples pasos resultan como consecuencia de sombreros que se unen a barras segmentadas en las l&aacute;minas para forzar el medio de enfriamiento (agua) solo a trav&eacute;s de una fracci&oacute;n de los tubos. Esto causa que el agua fluya una, dos, o cuatro veces la longitud del intercambiador de calor antes de salir.</p> <p class="rtejustify">La ecuaci&oacute;n indicada anteriormente aplica tanto a intercambiadores de placa y tubo, pero varios factores se expanden y complican la ecuaci&oacute;n b&aacute;sica, los cuales no ser&aacute;n abordados en este art&iacute;culo. Algunas reglas b&aacute;sicas a&uacute;n aplican: la mayor &aacute;rea A, y el mayor caudal Q.&nbsp; Esto tiene l&oacute;gica ya que con un coeficiente de transferencia de calor dado, intercambiadores m&aacute;s grandes por ende tienen una capacidad de transferencia m&aacute;s alta. El patr&oacute;n de flujo a trav&eacute;s del intercambiador puede influir considerablemente la tasa de remoci&oacute;n de calor.</p> <p class="rtejustify"><a href="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/archive/www.hydraulicspneumatics.com/FPE/images/hydraulics5_2.jpg" target="_self"><img alt="" src="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/archive/www.hydraulicspneumatics.com/FPE/images/hydraulics5_2.jpg" style="width: 248px; height: 242px; margin: 10px; float: right;" title="Figura 2: Intercambiadores de tubo" /></a>El flujo puede ser laminar, de transici&oacute;n o turbulento. Cuando es laminar y a bajas velocidades en el tubo, existe muy poco movimiento cerca de las paredes del tubo, lo que impide la transferencia de calor y funciona en realidad como un aislante. Un flujo m&aacute;s r&aacute;pido y turbulento no tiene un gradiente continuo de velocidad, lo que hace que la pel&iacute;cula de fluido se mueva. Obstrucciones de dise&ntilde;o al flujo denominadas turbuladores perturban el flujo laminar, lo que mejora la transferencia de calor. A pesar de que estas obstrucciones aumentan la ca&iacute;da de presi&oacute;n, el incremento en la tasa de transferencia de calor es m&aacute;s que suficiente para justificarla.</p> <p class="rtejustify"><strong>Enfriamiento por Agua</strong></p> <p class="rtejustify">Los intercambiadores de calor de tubo, como el que se muestra en la Figura 2, tienen una carcasa externa con tapas de tipo sombrero, debidamente selladas a ambos extremos. Un patr&oacute;n preciso de tuber&iacute;a dentro de la misma, corre a trav&eacute;s de su longitud y finaliza en platos laterales. Los extremos de las tuber&iacute;as est&aacute;n atornilladas a estos platos, los cuales sellan cada extremo de la carcaza. Agua fr&iacute;a fluye a trav&eacute;s de los tubos y aceite hidr&aacute;ulico caliente fluye alrededor de ellos dentro de la carcasa.</p> <p class="rtejustify">Estos intercambiadores est&aacute;n fabricados de bronce, cobre, hierro fundido, acero inoxidable, aluminio u otros materiales especiales. Los tubos internos se arreglan en grupos geom&eacute;tricos (cuadrados o triangulares vistos desde los extremos), para as&iacute; promover el flujo turbulento. Los tubos pasan a trav&eacute;s de platos que crean una rigidez estructural adecuada y crean un pasadizo a trav&eacute;s del cual pasa el aceite caliente. El patr&oacute;n de flujo mejora la transferencia de calor al forzar el fluido caliente a que pase perpendicularmente a los tubos.</p> <p class="rtejustify"><strong>Enfriamiento por Aire</strong></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/Hydac%20Air%20Cooler.jpg" target="_self"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/Hydac%20Air%20Cooler.jpg" style="width: 242px; height: 303px; margin: 10px; float: right;" title="Figura 3: Intercambiador aire - aceite." /></a>Cuando se tiene la opci&oacute;n de remover el calor a trav&eacute;s del aire circundante, se utiliza un intercambiador como el mostrado en la Figura 3. A pesar de que irradia calor hasta un punto, tambi&eacute;n se le conoce como radiador en vez de convector. El mismo remueve calor por convecci&oacute;n y se rige bajo la misma ecuaci&oacute;n de calor indicada anteriormente para calcular su comportamiento.</p> <p class="rtejustify">El aceite caliente pasa a trav&eacute;s de los tubos y turbulantes ayudan a romper con el flujo laminar para as&iacute; promover una transferencia de calor eficiente desde el fluido hacia las paredes del tubo. El metal utilizado en la fabricaci&oacute;n de este tiene una alta conductividad t&eacute;rmica.</p> <p class="rtejustify">El aire estancado alrededor del tubo representa un problema al querer aumentar la transferencia de calor. El aire es un mal conductor y tiene una resistividad t&eacute;rmica relativamente alta, lo cual limita la transferencia de calor. Tambi&eacute;n depende por supuesto de si el flujo es laminar o turbulento.</p> <p class="rtejustify">Al igual que con los intercambiadores de tubo, el aumentar el &aacute;rea efectiva de transferencia de calor, aumenta la capacidad del intercambiador. Aletas f&iacute;sicamente pegadas al tubo, aumentan el &aacute;rea de superficie y ayudan a romper con el flujo laminar del aire.</p> <p class="rtejustify">Algunas consideraciones para determinar el tipo de configuraci&oacute;n de intercambiadores de calor son:</p> <ul> <li class="rtejustify">Tubos ovales promueven el flujo turbulento a flujos menores que los redondos,</li> <li class="rtejustify">Los tubos redondos permiten flujos m&aacute;s altos y menores ca&iacute;das de presi&oacute;n que los ovales,</li> <li class="rtejustify">Los materiales generalmente utilizados son: bronce, aluminio, o acero. La decisi&oacute;n depende de las necesidades estructurales, o al ambiente de servicio,</li> <li class="rtejustify">Las aletas var&iacute;an en cuanto a la capacidad de transferencia de calor y la facilidad de limpieza.</li> </ul> <p class="rtejustify"><strong>Dise&ntilde;os Recientes</strong></p> <p class="rtejustify">Aunque los intercambiadores de tubo han sido los m&aacute;s utilizados en la industria por m&aacute;s de 50 a&ntilde;os, recientemente se han ido desarrollando nuevos dise&ntilde;os con mayor efectividad, lo que permite que se logren tasas de transferencia de calor equivalentes, en tama&ntilde;os y precios reducidos.</p> <p class="rtejustify">El dise&ntilde;o de extensi&oacute;n de superficie le agrega aletas al exterior de los tubos. Estas aumentan el &aacute;rea de superficie y mejoran el coeficiente de transferencia de calor, reduciendo a su vez el tama&ntilde;o del intercambiador de calor. Sin embargo, debido al aumento considerable en el &aacute;rea de superficie, la ca&iacute;da de presi&oacute;n tambi&eacute;n aumenta. El mismo est&aacute; igualmente disponible con una v&aacute;lvula con resorte para proteger el intercambiador contra subidas de presi&oacute;n.</p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/hydac-heat-exchanger.png" target="_self"><img alt="" longdesc="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/hydac-heat-exchanger.png" style="width: 300px; height: 240px; margin: 10px; float: right;" title="Figura 4: Intercambiadores de placa" /></a>Otro dise&ntilde;o reciente es el <strong>intercambiador de placa</strong>, como el mostrado en la Figura 4. La superficie de transferencia de calor consiste en una serie de placas de acero inoxidable, cada una estampada con un patr&oacute;n corrugado que es dise&ntilde;ado con una combinaci&oacute;n de factores: alta resistencia, eficiencia, y resistencia al ensuciamiento. El n&uacute;mero y dise&ntilde;o de las placas var&iacute;a de acuerdo a la capacidad de transferencia deseada. Las placas se unen con l&aacute;minas finas de cobre o n&iacute;quel entre s&iacute;. El arreglo es entonces fundido en un horno al vac&iacute;o que permite un sellado total. Conexiones de entrada y salida est&aacute;n disponibles en un n&uacute;mero de configuraciones variadas.</p> <p class="rtejustify">Los intercambiadores de placa son compactos, resistentes, y permiten una alta capacidad de transferencia de calor. Su superficie de transferencia se concentra en un volumen muy peque&ntilde;o. El corrugado en las placas induce el flujo turbulento y reduce el ensuciamiento. Un intercambiador de calor de placas contiene aproximadamente 1/8 del volumen l&iacute;quido de uno de tubos comparable.</p> <p class="rtejustify">Generalmente los fluidos fr&iacute;os y calientes pasan solo una vez por este intercambiador. Los de entrada son dirigidos a trav&eacute;s de canales paralelos alternos, creaos por las placas apiladas. El paso individual implica que el camino de flujo es tan largo como sea de alto el intercambiador. Este corto camino reduce la ca&iacute;da de presi&oacute;n que causa la turbulencia.</p> <p class="rtejustify">Los mismos principios de transferencia definen el desempe&ntilde;o de los intercambiadores de placas. Su construcci&oacute;n en acero inoxidable permite flujos de hasta 20 pies por segundo, lo que, junto con el flujo turbulento, permite tasas de transferencia de calor de hasta 3 a 5 veces aqu&eacute;llas de los intercambiadores de tubo. Lo alto de la tasa de transferencia implica que menos &aacute;rea es requerida para una capacidad espec&iacute;fica. Pruebas muestran que el dise&ntilde;o de las placas puede manejar part&iacute;culas&nbsp; de hasta 0.040 pulgadas si taparse. Se debe utilizar una malla de retenci&oacute;n si existe la posibilidad de que hayan part&iacute;culas de un tama&ntilde;o mayor. Debido a su construcci&oacute;n, estos intercambiadores deben ser limpiados qu&iacute;micamente.</p> <p class="rtejustify"><a href="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2014/04/Fig5_3.png" target="_self"><img alt="" src="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2014/04/Fig5_3.png" style="width: 300px; height: 359px; margin: 10px; float: right;" title="Figura 5: Intercambiador de placa con aletas." /></a>El intercambiador <strong>de placa con aletas</strong> se caracteriza por tener un dise&ntilde;o compacto, ligero y eficiente. Permite un enfriamiento significativamente superior por pulgada c&uacute;bica que los otros dise&ntilde;os descritos anteriormente. Estos intercambiadores consisten de c&aacute;maras con aletas separadas por platos planos y el fluido es dirigido a trav&eacute;s de caminos calientes y fr&iacute;os alternantes. El calor es transferido a trav&eacute;s de aletas en los pasadizos, a trav&eacute;s del plato separador, y hacia el fluido fr&iacute;o a trav&eacute;s de otro set de aletas, como se muestra en la Figura 5. La construcci&oacute;n b&aacute;sica consiste de capas alternas de aletas y placas fundidas juntas para generar una estructura tipo panal, que permite una alta resistencia a la vibraci&oacute;n y el golpe. Debido a que son eficientes, ligeros y a que presentan una alta integridad estructural, son frecuentemente utilizados en la industria militar y aeron&aacute;utica.</p> <p class="rtejustify">Otra raz&oacute;n de utilizar este tipo de intercambiadores es la flexibilidad de dise&ntilde;o. Los conductos de aletas pueden ser variados f&aacute;cilmente, al igual que la densidad de las mismas. Los intercambiadores de placa con aletas pueden ser dise&ntilde;ados para caber en espacios f&iacute;sicos espec&iacute;ficos.</p> <p class="rtejustify">Generalmente son fabricados en aluminio, pero independientemente de los materiales de construcci&oacute;n utilizados, internamente son fundidos a trav&eacute;s del proceso de brazing en atm&oacute;sferas controladas o al vac&iacute;o. Como requieren de procesos de manufactura precisos, generalmente son m&aacute;s costosos que los otros tipos de intercambiadores.</p> <p class="rtejustify"><strong>Consideraciones de Aplicaci&oacute;n</strong></p> <p class="rtejustify">Al determinar los requerimientos de intercambiadores de calor en un sistema hidr&aacute;ulico, se debe considerar cu&aacute;nto calor genera el sistema y la temperatura que el aceite y los componentes pueden tolerar. Determinar las necesidades de enfriamiento puede ser confuso ya que la generaci&oacute;n de calor puede variar a medida que la m&aacute;quina progresa por los distintos ciclos. De igual manera, la temperatura ambiental pudiese variar.</p> <p class="rtejustify">El primero paso en determinar los requerimientos de un intercambiador de calor de un sistema es el conocer los l&iacute;mites t&eacute;rmicos del fluido y los componentes. Esta informaci&oacute;n est&aacute; disponible por parte de los fabricantes respectivos.</p> <p class="rtejustify">Luego se debe estimar la generaci&oacute;n de calor total antes de construir el sistema. Para llegar a esta cifra, muchos dise&ntilde;adores utilizan un porcentaje de la potencia instalada. Al usar este m&eacute;todo, el calor se estima basado en un porcentaje de la ineficiencia total, basado en las ineficiencias de cada componente, superficie de las tuber&iacute;as y experiencias pasadas. El total de estos porcentajes se multiplica por la potencia instalada (HP) y convertida en BTU/minutos, BTU/hora, o kW.</p> <p class="rtejustify">Por ejemplo: a un sistema hidr&aacute;ulico de 300 HP se le asigna una eficiencia de 70% o 210 HP. El 30% restante o 90 HP se pierde como calor. Al convertirlo, tenemos que 3,820 BTU/minuto o 229,200 BTU/hora, o 67.14 kW. Luego de que el sistema se construye, la tasa de transferencia de calor se puede determinar midiendo el cambio de temperatura en operaci&oacute;n en un tiempo espec&iacute;fico.</p> <p class="rtejustify">Para evitar que el intercambiador est&eacute; expuesto a altas presiones, los intercambiadores de calor deben ser instalados en la l&iacute;nea de retorno. V&aacute;lvulas de bypass los protegen de subidas de presi&oacute;n, como las que se ven en per&iacute;odos de arranque en fr&iacute;o. Estas v&aacute;lvulas deben ser especificadas en base a la temperatura del fluido a utilizar, de manera que el fluido no pase por el intercambiador hasta alcanzar una temperatura predeterminada. Un m&eacute;todo alterno utilizado consiste en implementar un circuito separado con una bomba peque&ntilde;a que lleva el aceite al intercambiador. Generalmente se incorporan filtros a estos circuitos o ri&ntilde;oneras, como se les suele llamar.</p> <p class="rtejustify">Los intercambiadores de calor aire &ndash; aceite suelen ser utilizados en aplicaciones m&oacute;viles. El refrigerante del motor sirve para enfriar el aceite, pero el calor eventualmente debe ser removido a trav&eacute;s del radiador. Algunas instalaciones utilizan una secci&oacute;n separada del radiador frente al ventilador accionado por el motor para enfriar el aceite.</p> <p class="rtejustify">Cuando se considera una aplicaci&oacute;n y dimensionamiento para intercambiadores de calor, la temperatura estable del fluido y el tiempo que toma alcanzarla debe ser utilizado. Fabricantes de intercambiadores pueden ayudar en la aplicaci&oacute;n y selecci&oacute;n. Cuando contacte a un representante, tenga la siguiente informaci&oacute;n a la mano:</p> <ul> <li class="rtejustify">Carga cal&oacute;rica en BTU por minuto,</li> <li class="rtejustify">Caudal de aceite en gpm,</li> <li class="rtejustify">Temperatura m&aacute;xima del aceite,</li> <li class="rtejustify">Temperatura del ambiente durante operaci&oacute;n,</li> <li class="rtejustify">Contaminantes ambientales que pudiesen afectar el desempe&ntilde;o del sistema,</li> <li class="rtejustify">Ca&iacute;da de presi&oacute;n m&aacute;xima permisible.</li> </ul> <p class="rtejustify">Si el intercambiador de calor es de tipo agua-aceite, se requerir&aacute; tambi&eacute;n la temperatura y caudal del agua de enfriamiento a la entrada.</p> <p class="rtejustify">Con esto se puede entonces seleccionar el intercambiador correcto. Por lo general los intercambiadores aire-aceite son m&aacute;s caros que los agua-aceite cuando los comparamos en precio unitario, debido a que en aplicaciones estacionarias requiere de un conjunto ventilador &ndash; motor. Pero existen m&aacute;s consideraciones:</p> <ul> <li class="rtejustify">Costos de electricidad para alimentar el ventilador,</li> <li class="rtejustify">Costos del agua, el bombeo, o quiz&aacute;s el tratamiento de la misma antes y despu&eacute;s de su uso,</li> <li class="rtejustify">Ruido del ventilador y salida de aire caliente,</li> <li class="rtejustify">Superficies de enfriamiento tapadas por contaminantes en el ambiente de trabajo,</li> <li class="rtejustify">Monturas para vibraci&oacute;n y tuber&iacute;a flexible.</li> </ul> <p class="rtejustify">Un intercambiador correctamente dimensionado y aplicado puede ahorrar tiempo, dinero y costos de reparaci&oacute;n. Muchos de los sistemas de potencia hidr&aacute;ulicos no deber&iacute;an operar sin uno.</p> <p class="rtejustify"><i style="color: rgb(51, 51, 51); font-family: Georgia, Times, &quot;Times New Roman&quot;, serif; font-size: 15px; line-height: 22.2px;">Ricardo Sol&oacute;rzano&nbsp;se desempe&ntilde;a como Director General de EEM Technologies Corp., un proveedor de soluciones en Hidr&aacute;ulica, Neum&aacute;tica y Automatizaci&oacute;n Industrial para los mercados de Centro, Sur Am&eacute;rica y El Caribe. Para mayor informaci&oacute;n lo puede contactar al: &nbsp;+1(855)462-7633,&nbsp;<a href="mailto:rsolorzano@eemtechnologies.com" style="color: rgb(14, 95, 139);">rsolorzano@eemtechnologies.com</a>,&nbsp;<a href="http://www.eemtechnologies.com/" style="color: rgb(14, 95, 139);">www.eemtechnologies.com</a>.</i></p> </div> http://hydraulicspneumatics.com/blog/principios-ingenieriles-b-sicos-intercambiadores-de-calor#comments Heat Exchangers H&amp;P en tu idioma! Mon, 15 Aug 2016 12:00:00 +0000 39711 at http://hydraulicspneumatics.com Beat the Heat with an Oil Cooler http://hydraulicspneumatics.com/heat-exchangers/beat-heat-oil-cooler <div class="field-deck"> Hydraulic system got you hot under the collar? A heat exchanger may help you keep your cool. </div> <div class="node-body article-body"><table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/beat-heat-oil-cooler-pdf-download">Download this article in .PDF format</a><br /> This file type includes high-resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> <p>Contamination may be the biggest enemy of hydraulic systems, but excessive heat may be the biggest enemy of hydraulic oil. High temperatures damage the hydraulic fluid by accelerating oxidation, which breaks down the oil&rsquo;s chemical structure and forms sludge and varnish.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/heat-exchangers/how-select-mobile-hydraulic-heat-exchanger ">How to Select a Mobile Hydraulic Heat Exchanger</a></p> <p><a href="http://hydraulicspneumatics.com/200/TechZone/FluidPowerAcces/Article/False/6451/TechZone-FluidPowerAcces">Engineering Essentials: Heat Exchangers</a></p> <p><a href="http://hydraulicspneumatics.com/blog/how-connect-forced-air-heat-exchanger">How To Connect A Forced Air Heat Exchanger</a></p> </div> <p>Heat exchangers are widely used in mobile and industrial hydraulic systems to remove excess heat, whether it is generated by energy losses in a system or from external sources such as engines or the surrounding environment. They then transfer this heat to the surrounding air.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/HEAT%20EXCHANGERS%202016R_0.gif" style="width: 595px; height: 422px;" /></p> <p>Manufacturers offer a wide variety of heat exchangers to serve any hydraulic application. To provide an overview of the full spectrum of standard products, above we present a chart summarizing major manufacturers and general specifications on their products. Below is a table containing contact information for each company. To read up on some of the standard products offered by these manufacturers, check out the PDF of this article <em>(click on the PDF link at the top of the article)</em>.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Heat-Exchangers-TABLE-Version%202.gif" style="width: 595px; height: 548px;" /></p> <p>&nbsp;</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/heat-exchangers/beat-heat-oil-cooler#comments Heat Exchangers Hydraulic Fluids Fri, 12 Aug 2016 15:03:00 +0000 39691 at http://hydraulicspneumatics.com Product Gallery: Beat the Heat with an Oil Cooler http://hydraulicspneumatics.com/gallery/product-gallery-beat-heat-oil-cooler <div class="node-body gallery-body"><p>Contamination may be the biggest enemy of hydraulic systems, but excessive heat may be the biggest enemy of hydraulic oil. High temperatures damage the hydraulic fluid by accelerating oxidation, which breaks down the oil&rsquo;s chemical structure and forms sludge and varnish.</p> <p>Heat exchangers are widely used in mobile and industrial hydraulic systems to remove excess heat, whether it is generated by energy losses in a system or from external sources such as engines or the surrounding environment. They then transfer this heat to the surrounding air.</p> <p>Manufacturers offer a wide variety of heat exchangers to serve any hydraulic application. To provide an overview of the full spectrum of standard products, we present a chart summarizing major manufacturers and general specifications on their products. We also compiled a table containing contact information for each company, which is followed by capsule descriptions of standard products offered by these manufacturers.</p> </div> http://hydraulicspneumatics.com/gallery/product-gallery-beat-heat-oil-cooler#comments Heat Exchangers Gallery Thu, 11 Aug 2016 21:37:00 +0000 39681 at http://hydraulicspneumatics.com Done Deal: Scott Industrial Systems Buys EFPP http://hydraulicspneumatics.com/news/done-deal-scott-industrial-systems-buys-efpp <div class="node-body article-body"><p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/04/EFPP%20and%20Scott.jpg" style="width: 595px; height: 150px; margin: 3px;" /></p> <p>By acquiring Engineered Fluid Power Products (EFPP), <a href="http://www.scottindustrialsystems.com/" target="_blank">Scott Industrial Systems</a> looks to enhance its service to the industry with further expansion of its component and hydraulic/pneumatic system product portfolio. Scott will also obtain EFPP&rsquo;s facility in Schaumburg, Illinois in the new partnership.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/hydraulic-filters/industrial-growth-partners-acquires-des-case-corp">Industrial Growth Partners Acquires Des-Case Corp.</a></p> <p><a href="http://hydraulicspneumatics.com/other-components/partnership-delivers-aerospace-standard-cad-model-catalog">Partnership Delivers Aerospace-Standard CAD-Model Catalog</a></p> <p><a href="http://hydraulicspneumatics.com/news/bridging-gap-between-education-and-advanced-manufacturing">Bridging the Gap Between Education and Advanced Manufacturing</a></p> </div> <p>Bringing EFPP, established in 1968, into the fold will help broaden Scott&rsquo;s technical capabilities, which it developed over the last six-plus decades. The companies&rsquo; combined resources will serve to provide practical, proven, and economical solutions to a range of fluid-power challenges in various industries.</p> <p>&ldquo;Scott Industrial and Engineered Fluid Power Products&rsquo; combined resources and expertise will enable us to better serve our customers&rdquo; says Christina Logan, President of Scott Industrial Systems. John Currie, the President of EFPP, will remain vested in the company and continue his leadership role for the Illinois location.</p> <p>&ldquo;Their location in Schaumburg, Illinois puts us in an excellent position to expand our presence in the Midwest,&rdquo; says Logan. Scott Industrial currently has three sales and inventory offices in Indianapolis, Indiana; Louisville, Kentucky; and Huron, Ohio.</p> <p>Scott Industrial Systems&mdash;a full-line fluid-power distributor headquartered in Dayton, Ohio&mdash;offers sales expertise and services in hydraulics, pneumatics, and electronic control systems. Scott maintains a range of fluid-power and motion-control products from <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.eaton.com_Eaton_index.htm&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=RzIs9GI3dp0HehMfeUaipJstCd1HCIuJ08F2L9MhpHU&amp;e=" target="_blank">Eaton</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.parker.com_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=vcX10ivK86-uMIn-irQvy7rWY-WDNWDAnC2F07xXSXA&amp;e=" target="_blank">Parker</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.auburngear.com_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=nmNYltkLO08ytn2-FyVXO9vawjFAoNov7Q3TioGgQ8U&amp;e=" target="_blank">Auburn Gear</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.humphrey-2Dproducts.com_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=y7N-iD1lfsjWi89oT5wxmitOgq0RAIvXal_HSJgR-iM&amp;e=" target="_blank">Humphrey</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.continentalhydraulics.com_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=yIn2oDqk6YUBVaty_vTz1ZwL6bYcuvWy4gpmItq61BA&amp;e=" target="_blank">Continental Hydraulics</a>, and <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.versa-2Dvalves.com_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=mbZw2U-1dP62H7UOK1j0ak29fp_ShkDwo4PhT4hPVUk&amp;e=" target="_blank">Versa</a>. For other major vendors, go to <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.scottindustrialsystems.com_suppliers_&amp;d=DQMFAg&amp;c=H98lxvesFHsl1ZPcztRg4g&amp;r=bgwCokX4r0lh6-34dHrMsjuHu_KYsFLgfcx-VqkGGMA&amp;m=tKTfy-gVcGqzdGvWBrDU5JpA6CFUzqdN8N5mA2uv5Wg&amp;s=BTOLJu7r3i56WPx4OzZVuSxIK4W2v2U-LZ3XTGGHaO8&amp;e=" target="_blank">http://www.scottindustrialsystems.com/suppliers/</a>.</p> </div> http://hydraulicspneumatics.com/news/done-deal-scott-industrial-systems-buys-efpp#comments News Thu, 11 Aug 2016 16:32:00 +0000 39671 at http://hydraulicspneumatics.com Anchor Fluid Power and TCF Industries Merge Operations in Houston http://hydraulicspneumatics.com/news/anchor-fluid-power-and-tcf-industries-merge-operations-houston <div class="node-body article-body"><p><a href="http://www.anchorfluidpower.com/" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/04/AFPlogo.jpg" style="width: 230px; height: 117px; margin: 3px; float: left;" />Anchor Fluid Power</a> announces its acquisition of <a href="http://www.tcfindustries.com/" target="_blank">TCF Industries</a>&mdash;a Houston-based manufacturer of custom fittings and flanges for petroleum, offshore, sanitary, and chemical markets. By acquiring TCF Industry&rsquo;s local manufacturing hub in Houston, Anchor Fluid Power expects the partnership to strengthen its product offerings and services.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/news/danfoss-power-solutions-acquire-white-drive-products ">Danfoss Power Solutions to Acquire White Drive Products</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-filters/industrial-growth-partners-acquires-des-case-corp ">Industrial Growth Partners Acquires Des-Case Corp. </a></p> <p><a href="http://hydraulicspneumatics.com/news/brennan-industries-acquires-truflow-hydraulic-components">Brennan Industries Acquires Truflow Hydraulic Components</a></p> </div> <p>&ldquo;TCF Industries is an excellent fit for us,&rdquo; says Joe Coffaro, President of Anchor Fluid Power.&nbsp;&ldquo;We couldn&rsquo;t be more pleased with the knowledge and experience the team at TCF brings to our organization.&rdquo;</p> <p>TCF Industries and Anchor Fluid Power have merged operations into a significantly larger facility, which is located at 6529 Cunningham Road on the northwest side of Houston. Minutes from U.S. 290 and the Sam Houston Tollway, the new site provides additional space for manufacturing, warehousing, and offices, as well as a spacious walk-in area for customers.</p> </div> http://hydraulicspneumatics.com/news/anchor-fluid-power-and-tcf-industries-merge-operations-houston#comments Fittings & Couplings Marine & Offshore News Wed, 10 Aug 2016 17:16:00 +0000 39651 at http://hydraulicspneumatics.com Smooth and Steady on the Slopes http://hydraulicspneumatics.com/hydraulic-valves/smooth-and-steady-slopes <div class="field-byline"> Daniel Galler, Eaton Hydraulics </div> <div class="field-deck"> Snow groomer’s versatile electrohydraulic system maintains precise control in harsh operating conditions. </div> <div class="node-body article-body"><p>Snow groomers designed and manufactured by <a href="https://www.prinoth.com/en/" target="_blank">Prinoth</a>, based in Sterzing, Italy, push the limits of what is mechanically possible. These advanced vehicles must function within surprisingly rigid parameters, working flawlessly at temperatures down to &ndash;30&deg;C, on icy and wet surfaces, and scaling inclines that can exceed 45 deg.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/hydraulic-valves/versatile-valve-rates-10-sections">Versatile Valve Rates a 10&mdash;Sections, That Is</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-valves/smart-compact-actuator-mobile-hydraulic-valves">Smart, Compact Actuator for Mobile Hydraulic Valves</a></p> <p><a href="http://hydraulicspneumatics.com/other-technologies/mobile-equipment-training-challenges">Mobile Equipment &mdash; Training Challenges</a></p> </div> <p>Snow groomers typically operate in the dark, after skiing hours. Operators must continually adapt blade positions to collect the right amount of snow given the snow humidity, temperature, and other variables. Operators depend on feedback to know their blade settings, which is a delicate art and science. They require fast reaction times and the ability to sense the blade position when starting or stopping a movement.</p> <p>By 2010, Prinoth had made great advances in engine management, joystick operation, and touchscreen operation. But hydraulics in these punishing conditions still lagged. <a href="http://www.eaton.com/Eaton/ProductsServices/Hydraulics/index.htm" target="_blank">Eaton Hydraulics</a> responded with components that helped Prinoth make smarter machines. In particular, Eaton&rsquo;s CMA valves provide dynamic machine control (DMC) for high traction, precise control of implements, and automated functionality.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/09/LEITWOLF-4F.gif" style="width: 595px; height: 366px;" title="Prinoth’s Leitwolf snow groomer must work in cold conditions over varying surface conditions and grades, yet still maintain smooth, precise control at all travel speeds. These challenges are met using dynamic machine control centered around Eaton’s new CMA directional control valves." /></p> <p><strong>Upgraded Hydraulics</strong></p> <p>Older hydraulic technology applied to such wide and heavy accessories would generate noise and waste energy by using flow restrictions to control movement. Orifices that restrict flow also generate heat. If a traditional hydraulic approach was taken, the result could have easily been sluggish, hard-to-predict response times. For instance, viscosity changes in the oil as temperature changed would affect response times and reduce productivity by forcing operators to reduce speeds to maintain precise control.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/04/pullquote260px_1.gif" style="width: 260px; height: 113px; float: left; margin-top: 6px; margin-bottom: 6px;" />The CMA valve runs Eaton&rsquo;s Pro-FX Technology platform to improve response times. Where older systems might exhibit response time of 1.1 s, systems using the CMA valve produce response times of 0.1 s. For the operator, this appears as a nearly instant response, which allows for precise control on the slopes no matter the outside conditions.</p> <p>Because the CMA valve functions as an embedded system, it communicates on the CANbus and does not require dedicated wiring. An embedded system simplifies both the manufacturing and the subsequent servicing.</p> <p>With the Leitwolf model in particular, Prinoth used CMA valve technology to improve serviceability. The CMA valve allows Prinoth to use fewer hydraulic components, which means lower service costs and less service spending.</p> <p>Prinoth can support its customer almost in real time by connecting remotely to perform initial analyses and sometimes even fix a problem immediately. Service technicians use a diagnosis program to effectively monitor valve status. Failures are reported to the driver to further identify and resolve potential problems. With embedded systems in more and more vehicles, logic became available for more service operations.</p> <p><strong>Controls Features and Benefits</strong></p> <p>Dynamic machine control is the driving force behind smarter machines, including snow groomers. Electronic load sensing with the CMA valve enables flexible control-system architecture and easily supports varying machine working settings along with a variety of pumps.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/09/CMA-90.gif" style="width: 595px; height: 437px;" title="Eaton’s CMA valve uses ProFX configuration software to finely tune a wide variety of operating conditions to improve system response and control while simultaneously improving energy efficiency. The valve can be configured in up to eight independent directional-control sections." /></p> <p>Flexible system architecture reduces routing complexity, saves on lengths of hose, and improves weight distribution of components on the vehicle chassis. These come as a result of the CMA valve sets, which allow up to eight multi-sectional and multibank combinations.</p> <p>Hydraulic system designers can use the CMA valve with most conventional LS pumps, not just those from Eaton. The valve continuously monitors the flow balance, pressure, and temperature of the oil at its inlet port. It also monitors pressure signals from any work port in the system at roughly 700 Hz. Combined with spool response of &ndash;100% to +100% within 20 msec, this is fast enough to compensate for pressure spikes by modulating accelerations and decelerations to control the dynamic pressure of the actuators.</p> <p>The CMA valve can also eliminate up to 70% of oscillation amplitude from harmonic resonance&mdash;boom bounce, for example. The residual 30% is typically difficult to detect externally.</p> <p>An integrator can follow the load-sense pressure or keep the pump at constant pressure and eventually define a torque-limiting curve to prevent bogging down the power takeoff. The control acts through a pressure modulator in the load-sense line back to the pump.</p> <p>The CMA valve lets designers set a specific load-sense differential pressure (∆P) for any of the working sections into the system. The valve can reduce energy consumption by lowering the ∆P when a function does not need aggressive dynamic response. Conversely, it can provide quicker response when a specific load needs higher acceleration or deceleration when there&rsquo;s an increase in vehicle speed.</p> <p>Independent metering on the CMA valve unlocks the mechanical link between the amount of oil sent an actuator and the amount of oil routed back to tank. This capability opens up a wide range of control criteria to achieve simultaneous control of pressure and flow. Such dynamic response and inertial management allows for customized tuning of the load-control response using Eaton&rsquo;s ProFX configuration software.</p> <p>An intelligent flow controller embedded in the CMA valve has a tunable algorithm that can alter inertial directional control on the valve&rsquo;s meter-in line and a dynamic tunable pressure control on its meter-out line. This combination of separately tunable and synchronized controls on the two independent spools enables fine dynamic response tuning and customizable load-feel feedback.</p> <p><em>Daniel Galler is a Mechanical Engineer at Eaton&rsquo;s Hydraulic Group in Northern Italy. For more information, call Eaton Hydraulics at <span class="baec5a81-e4d6-4674-97f3-e9220f0136c1" style="white-space: nowrap;">(800) 386-1911</span>, or visit <a href="http://www.eaton.com/hydraulics" target="_blank">www.eaton.com/hydraulics</a>.</em></p> <p><em><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></em></p> </div> http://hydraulicspneumatics.com/hydraulic-valves/smooth-and-steady-slopes#comments Hydraulic Pumps & Motors Hydraulic Valves Tue, 09 Aug 2016 18:48:00 +0000 39641 at http://hydraulicspneumatics.com Is This Problem Destroying Your Hydrostatic Transmission? [Video] http://hydraulicspneumatics.com/blog/problem-destroying-your-hydrostatic-transmission-video <div class="node-body blog-body"><p>Rupert Murdoch, the boss of global media giant News Corporation was a neighbor of ours where I grew up. Not that my family was particularly well off. It&#39;s just that my father&#39;s farm happened to be situated close to a group of &quot;sheep stations&quot; the media mogul owned. But compared to the 300,000 acres Mr Murdoch controlled, Dad&#39;s land holding was modest indeed.<br /> <br /> In 1981, just in time for the wheat harvest, Dad took delivery of a new combine harvester. It was one of many he owned over the years, but this one was different. It was the first I&#39;d seen equipped with a hydrostatic transmission for the ground drive. The infinitely variable and step-less control afforded by a hydrostatic transmission was quite an advance over the mechanical gearbox with a variable speed input used in earlier models.<br /> <br /> Anyway, in its second season the hydrostatic transmission gave trouble. Downtime during harvest was always guaranteed to elevate Dad&#39;s stress level to 11 out of 10. And that wasn&#39;t a pretty sight. I didn&#39;t know much about hydraulics then and looking back, boy do I wish a book like <a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=thth">The Hydraulic Troubleshooting Handbook</a> was available to me at the time.<br /> <br /> Of course in the 35 years since, I&#39;ve accumulated a lot of knowledge on hydrostatic transmissions. And an issue that is often overlooked and one that came up in a job I was involved in recently, is the combined effect of fluid compressibility and the &#39;accumulator effect&#39; of conductors (the increase in volume of a hose or pipe as pressure increases).<br /> <br /> When a hydrostatic transmission is subject to a sudden increase in load, the motor stalls instantaneously and system pressure increases until the increased load is overcome or the high pressure relief valve opens - whichever occurs first.<br /> <br /> While the motor is stalled, there is no return flow from the outlet of the motor to the inlet of the pump. This means that the transmission pump will cavitate for as long as it takes to make-up the volume of fluid required to develop the pressure needed to overcome either the increased load or the high-pressure relief valve. How long the pump cavitates depends on the output of the charge pump, the magnitude of the pressure increase, and its influence on the increase in volume of the conductor and the decrease in volume of the fluid. This is illustrated in the following example.<br /> <br /> A hydrostatic transmission operating the drill head on a drill rig is delivering a flow of 35 GPM at a pressure of 1000 PSI. A sudden increase in load on the drill bit instantaneously stalls the motor until sufficient pressure is developed to overcome the increase in load, which for the purposes of this example is 3000 PSI.<br /> <br /> In order to increase system pressure from 1000 PSI to 3000 PSI, the transmission pump must make-up additional volume, due to the compression of the hydraulic fluid and the volumetric expansion of the high-pressure hose between the pump and the motor. But because the motor is momentarily stalled, there is no return flow from the outlet of the motor to the inlet of the pump. The only fluid available at the inlet of the transmission pump is 7 GPM from the charge pump, which is around 80% less than required!<br /> <br /> In this example, the high-pressure hose between the pump and motor is SAE 100R9AT-16; 36 feet long. The volumetric expansion of this hose, due to the increase in pressure, is 9.7 in&sup3; and the additional volume required due to compression of the fluid within this hose is 2.8 in&sup3;. Therefore the total, additional fluid volume required to increase the operating pressure from 1000 to 3000 PSI is 12.5 in&sup3; (9.7 + 2.8 = 12.5).<br /> <br /> To calculate the time taken for the operating pressure to increase from 1000 to 3000 PSI, which is equivalent to the length of time the transmission pump will cavitate, we divide the required make-up volume (12.5 in&sup3;) by the volume available from the charge pump per second (27 in&sup3;). In this example, the transmission pump cavitates for 0.46 seconds every time a sudden increase in load demands an increase in system pressure from 1000 to 3000 PSI (12.5 &divide; 27 = 0.46).<br /> <br /> This problem occurs in applications where there are sudden fluctuations in load on the transmission. Typical examples include drill rigs, boring machines, and cutter wheels on dredgers.<a href="http://www.hydraulicsupermarket.com/accumulator-effect.html"><strong> This 2.5 minute simulation video demonstrates the problem</strong></a>.</p> </div> http://hydraulicspneumatics.com/blog/problem-destroying-your-hydrostatic-transmission-video#comments Hydraulics At Work Tue, 09 Aug 2016 04:26:00 +0000 39631 at http://hydraulicspneumatics.com Fluid Power Professionals Invited to Attend IMTS http://hydraulicspneumatics.com/air-compressors/fluid-power-professionals-invited-attend-imts <div class="field-deck"> The 31st edition of the bi-annual showcase will take place this coming September in Chicago. </div> <div class="node-body article-body"><p><img alt="Fig. 1" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/08/McCormick_Square.jpg" style="width: 300px; height: 450px; margin: 5px; float: left;" />The 2016 <a href="https://www.imts.com/" target="_blank">International Manufacturing Technology Show (IMTS)</a> will be coming to McCormick Place in Chicago, Illinois, September 12 through 17, bringing together OEMs, engineers, designers, and workers from a range of different industries. With more than 2,000 exhibitors, approximately 80 of which deal directly with fluid power <em>(see the exhibitor list)</em>, IMTS is a great way to network and build business-to business relationships, discover new products and systems, and brainstorm solutions.</p> <p>Advanced (reduced) pricing for registration is only available until August 12. IMTS members, students, exhibitors, and media are invited to attend. Individuals who have attended four consecutive editions of IMTS may register as Star Members, achieving special access to the Star Club lounge and placement in an expedited line to ride the Strati&mdash;the world&rsquo;s first 3D-printed electric car by Local Motors, &nbsp;created at IMTS in 2014. They are also prioritized for a range of other benefits.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/news/bridging-gap-between-education-and-advanced-manufacturing">Bridging the Gap Between Education and Advanced Manufacturing</a></p> <p><a href="http://hydraulicspneumatics.com/seals/knowledge-center-hub-offers-educational-media-sealing-tech">Knowledge Center Hub Offers Educational Media on Sealing Tech</a></p> <p><a href="http://hydraulicspneumatics.com/news/new-spin-hydraulics-education ">A New &ldquo;Spin&rdquo; on Hydraulics Education</a></p> </div> <p>IMTS also presents the MyShow planner, a convenient app that enables visitors to organize their schedule for the show. Visitors are encouraged to visit the IMTS website to book affiliated hotels for favorable rates and locations, available until August 15. A shuttle from the hotel to the venue runs on show days.</p> <h3>Fluid Power Conference Covers Energy-Conservation Best Practices</h3> <p>On Wednesday, September 14, visitors are invited to attend the Fluid Power Conference in Room 196A, where six speakers will discuss practices to improve plant efficiency and production. Topics will range from energy-saving methods and hardware to sensor implementation and connectivity in Industry 4.0. The cost for the Fluid Power Conference is $275&mdash;a package deal that includes the cost of lunch and access to the IMTS exhibit floor for all six days. Don&rsquo;t forget to register.</p> <p><img alt="Fig. 2" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/08/AMT___s_Emerging_Technology_Center-1.jpg" style="width: 300px; height: 450px; margin: 5px; float: left;" title="Sign up to ride in the Strati, the first 3D-printed electric car that was created in six days at the 2014 show. " />Jon Jensen, manager of the Energy Conservation Group for <a href="http://sourceesb.com/smccorp/distributors-and-vendors" target="_blank">SMC Corp.</a>, will kick off the conference at 9 a.m. with &ldquo;Energy Conservation in Pneumatic Systems.&rdquo; He will begin the session with a definition of energy conservation and proceed to touch on areas where it can be applied to benefit companies. Before working in his current position, Jon served as SMC&rsquo;s North American training manager for almost 10 years. He holds Pneumatic Specialist (CFPPS) and Electronic Controls Specialist Certifications (CFPECS), and serves as an Accredited Instructor for the International Fluid Power Society.</p> <p>Next, from 10 until 10:55 a.m., Dennis Mell, VP of manufacturing at <a href="http://nexmatix.com/" target="_blank">Nexmatix LLC</a>, will host &ldquo;How to Fix the Biggest Leak in Actuation Systems,&rdquo; providing case studies where Nexmatix delivered 20-30% compressed air savings. A range of demonstrations will be used to show how real-time monitoring systems can support valve preventative maintenance by promptly reporting air leaks and number of cycles.</p> <p>The following hour, Larry Brown, corporate sales manager at <a href="http://proportionair.com/" target="_blank">Proportion-Air</a>, will describe how inefficient systems increase the cost of utilities. In &ldquo;Compressed Air&mdash;Use Only What You Need,&rdquo; he will suggest hardware that can optimize compressed-air systems to cut down on the cost of electricity and power.</p> <p>After lunch, Bob Pettit, CTO at <a href="https://www.hawe.com/en-us/" target="_blank">HAWE Hydraulik North America</a>, will present three major topics surrounding hydraulic clamping circuits in machining centers in &ldquo;Energy Efficiency in Hydraulic Systems of Machining Centers.&rdquo; From 1 to 1:55 p.m., he will address energy efficiency with leakage-free hydraulics; total cost of ownership; and sample calculation of a machining center, providing animations of a hydraulic circuit to help the audience understand key points.</p> <p>At 2 p.m., Peter Nachtwey, president of <a href="http://sourceesb.com/deltacomputersystems/distributors-and-vendors" target="_blank">Delta Computer Systems</a>, will discuss ways to control automated transport of heavy masses using proportional-integral-derivative (PID) controllers with second derivative gain to eliminate oscillations and ensure smooth and precise transport. &ldquo;Optimizing Sensor, Actuator, and Control Technology in Fluid Power Motion&rdquo; will get down and dirty, discussing second-order tuning and its role in optimizing closed-loop systems.</p> <p><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/08/IMTS_Booth_TABLE_big.gif" target="_blank"><img alt="Table (top)" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/08/IMTS_Booth_TABLE_small.gif" style="width: 595px; height: 465px;" /></a></p> <p>To illustrate his point, Nachtwey will create a scenario in the forest-products industry. Heavy masses with small-diameter cylinders in a sawmill will be treated like masses on the end of a weak spring. He will show how the PID with second derivative gain, PID2, allows the overall controller gains to be increased while still maintaining a damped response. In addition, the second-derivative gain adds &ldquo;addition electronic damping,&rdquo; which significantly reduces or eliminates oscillations where normal PID gain controllers fail.</p> <p>Finally, Steve Zumbusch, director of technology development at <a href="http://www.eaton.com/" target="_blank">Eaton Corp.</a>, will present &ldquo;Products and Practices for Increasing Machine Safety and Energy Efficiency&rdquo; from 3 until 3:55 p.m. His main focus will be on the development of safe designs and features for factory equipment. He will also touch upon preservation of a system&rsquo;s safety during maintenance, as well as discuss best practices to achieve energy-efficient designs without minimizing their safety.&nbsp;</p> <h3>Co-Located Motion, Drive &amp; Automation Trade Fair</h3> <p>Five co-located shows will also take place over the course of IMTS, sponsored by Hannover Fairs, US. One of these, the Motion, Drive &amp; Automation (MDA) trade show, will feature power-transmission and motion-control technology, along with a range of hydraulic and pneumatic equipment geared for Industry 4.0 and the future of advanced manufacturing. Equipment to be demonstrated includes compressors, heat exchangers, linear-motion systems, air-pressure regulators and air-flow control valves, predictive-maintenance solutions, motors, and pumps.</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/air-compressors/fluid-power-professionals-invited-attend-imts#comments Air Compressors Maintenance Other Technologies Controls & Instrumentation Mon, 08 Aug 2016 15:20:00 +0000 39621 at http://hydraulicspneumatics.com Renovación Hidráulica de la Torre Eiffel http://hydraulicspneumatics.com/blog/renovaci-n-hidr-ulica-de-la-torre-eiffel <div class="node-body blog-body"><p class="rtejustify">La torre Eiffel es una de las estructuras m&aacute;s impactantes que existen en el mundo, no solo a nivel est&eacute;tico, sino tambi&eacute;n estructural, sobre todo considerando su antig&uuml;edad. La mayor&iacute;a de los 20 mil visitantes que recibe diariamente la ven desde abajo, pero aqu&eacute;llos que deciden explorar su estructura interna son testigos de una experiencia totalmente distinta. Esta vista se hace a&uacute;n m&aacute;s impresionante gracias a la presencia de ascensores que llevan a los visitantes a diferentes niveles en la torre, donde inclusive existe un restaurante.</p> <p class="rtejustify">Los ascensores han sido parte integral de la torre desde el principio. De hecho, la torre ten&iacute;a originalmente 5 ascensores hidr&aacute;ulicos accionados por motores de vapor. La hidr&aacute;ulica fue renovada en 1899 y retro adaptada con motores el&eacute;ctricos en 1912. Por supuesto, muchas renovaciones posteriores ocurrieron en el transcurso. El trayecto combinado es de 103,000 Km (64,000 millas) anuales, por lo que la existencia de un sistema seguro, confiable y robusto es prioritaria.</p> <p class="rtejustify">Dos de los elevadores originales han pasado por 5 renovaciones a trav&eacute;s de los a&ntilde;os, y dos de los ubicados en el lado oeste fueron reemplazados completamente en el a&ntilde;o 2008. Todos son a&uacute;n hidr&aacute;ulicos y operan de manera similar al original: son de operaci&oacute;n relativamente sencilla.</p> <p class="rtejustify"><a href="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Eiffelturm_Copyright_Bosch_Rexroth_AG.jpg" target="_self"><img alt="" src="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Eiffelturm_Copyright_Bosch_Rexroth_AG.jpg" style="width: 595px; height: 446px; margin: 10px;" title="Figura 1: El diseño del sistema hidráulico original de los ascensores fue originalmente diseñado e instalado hace más de 100 años. Al reemplazarlos por un sistema moderno que mantuviese la simplicidad del original redujo el consumo energético en un 25% (Foto cortesía de Bosch Rexroth AG)." /></a></p> <p class="rtejustify"><strong>Ingenier&iacute;a de Primera</strong></p> <p class="rtejustify">El l&iacute;der del proyecto de modernizaci&oacute;n en el lado hidr&aacute;ulico fue Dr. Oliver Ismeurt. Desde el principio revis&oacute; con admiraci&oacute;n los planos amarillentos de los componentes. Pero exist&iacute;an dos problemas fundamentales: primero, los dibujos no mostraban el sistema hidr&aacute;ulico en su totalidad, y segundo, la condici&oacute;n original de los elevadores no era tal luego de las alteraciones que sufrieron en 1980. Junto con su equipo y la empresa operativa <a href="http://www.tour-eiffel.biz/">Soci&eacute;t&eacute; d&#39;Exploitation de la Tour Eiffel (SETE)</a>, examin&oacute; y reconstruy&oacute; la soluci&oacute;n t&eacute;cnica original.</p> <p class="rtejustify">Bosch Rexroth fue instrumental en modernizar el sistema hidr&aacute;ulico completo del ascensor en el ala oeste. El sistema indirecto de accionamiento sigue la idea original del dise&ntilde;o de Gustave Eiffel. Ismeurt se impresion&oacute; de lo confiable del dise&ntilde;o, incluso considerando que fue desarrollado hace m&aacute;s de un siglo atr&aacute;s con m&eacute;todos limitados de c&aacute;lculo y producci&oacute;n.</p> <p class="rtejustify"><strong>Uso de Energ&iacute;a Reducido en 25%</strong></p> <p class="rtejustify">Los dise&ntilde;adores de Bosch Rexroth uilizaron software de simulaci&oacute;n para verificar las condiciones est&aacute;ticas y din&aacute;micas del sistema completo (hidr&aacute;ulica, mec&aacute;nica y sistemas de control), antes que cualquier cosa fuese instalada. Por ello, el equipo se sent&iacute;a confiado en que el dimensionamiento y funcionamiento de todos los componentes hidr&aacute;ulicos &ndash; y del sistema en su totalidad &ndash; cubriera o excediera las expectativas.</p> <p class="rtejustify">El nuevo sistema sigue las bases del originalmente instalado que constaba de dos cilindros de levantamiento y tres acumuladores. Sin embargo, a diferencia del original, el ascenso y descenso no es controlado por v&aacute;lvulas. En su lugar, la velocidad m&aacute;xima, aceleraci&oacute;n, y frenado son controlados por bombas de desplazamiento variable. En consecuencia, el ascensor, que hoy en d&iacute;a transporta hasta 1,000 pasajeros por hora, consume aproximadamente un 25% menos energ&iacute;a que el dise&ntilde;o anterior.</p> <p class="rtejustify">Un reto en particular fue la ubicaci&oacute;n de la unidad de potencia &ndash; deb&iacute;a ser colocada en un s&oacute;tano, el cual solo pod&iacute;a ser accedido a trav&eacute;s de un ascensor de carga peque&ntilde;o. Esto implic&oacute; que los t&eacute;cnicos tuviesen que desarmar los componentes grandes y pesados parcialmente, y volver a armarlos una vez en el s&oacute;tano.</p> <p class="rtejustify">El acceso a la sala de m&aacute;quinas, en la cual deb&iacute;a ser instalado el cilindro, no fue nada f&aacute;cil. &ldquo;Nunca olvidar&eacute; como bajamos los cilindros de 18 metros de largo (59 pies) con precisi&oacute;n milim&eacute;trica a la sala de m&aacute;quinas&rdquo; recuerda Oliver Soret,, t&eacute;cnico hidr&aacute;ulico en Bosch Rexroth, responsable de la puesta en marcha de los componentes hidr&aacute;ulicos de la Torre Eiffel.</p> <p><i style="color: rgb(51, 51, 51); font-family: Georgia, Times, &quot;Times New Roman&quot;, serif; font-size: 15px; line-height: 22.2px;">Ricardo Sol&oacute;rzano&nbsp;se desempe&ntilde;a como Director General de EEM Technologies Corp., un proveedor de soluciones en Hidr&aacute;ulica, Neum&aacute;tica y Automatizaci&oacute;n Industrial para los mercados de Centro, Sur Am&eacute;rica y El Caribe. Para mayor informaci&oacute;n lo puede contactar al: &nbsp;+1(855)462-7633,&nbsp;<a href="mailto:rsolorzano@eemtechnologies.com" style="color: rgb(14, 95, 139);">rsolorzano@eemtechnologies.com</a>,&nbsp;<a href="http://www.eemtechnologies.com/" style="color: rgb(14, 95, 139);">www.eemtechnologies.com</a>.</i></p> </div> http://hydraulicspneumatics.com/blog/renovaci-n-hidr-ulica-de-la-torre-eiffel#comments Other Industries H&amp;P en tu idioma! Mon, 08 Aug 2016 12:19:00 +0000 39601 at http://hydraulicspneumatics.com Eiffel Tower Gets Lift from Hydraulics http://hydraulicspneumatics.com/hydraulic-pumps-motors/eiffel-tower-gets-lift-hydraulics <div class="node-body article-body"><table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/eiffel-tower-gets-lift-hydraulics-pdf-download">Download this article as a PDF file.</a><br /> This file type includes high-resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> <p>Whether you view the Eiffel Tower up close or from afar, it may be the most impressive man-made structure in the world. Most of its nearly 20,000 visitors per day view the Tower from the outside, but those exploring the inner structure witness a different experience. The view inside is further enhanced by elevators that whisk visitors to different levels to learn more about the landmark, enjoy breathtaking views from dizzying heights, and even take in a casual meal.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/200/TechZone/HydraulicPumpsM/Article/False/87338/TechZone-HydraulicPumpsM">Hydraulic Pump Switching to Stand-by in Gold Mine Elevator</a></p> <p><a href="http://hydraulicspneumatics.com/200/TechZone/Cylinders/Article/False/6558/TechZone-Cylinders">Hydraulics Keeps Elevator from Moving Too Fast</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/60-years-ago-two-pump-system-provides-synchronized-motion">60 Years Ago: Two Pump System Provides Synchronized Motion</a></p> </div> <p>The elevators have been an integral part of the Eiffel Tower from the beginning. In fact, the Tower originally contained five hydraulic elevators that used steam engines as prime movers. The hydraulics were updated in 1899 and retrofitted with electric motor drives in 1912. Of course, several upgrades occurred after that. The elevators travel a combined 103,000 km (64,000 mi.) annually, so longevity and reliability carry a high priority&mdash;with safety, of course, topping them both.</p> <p>Two of the original hydraulic elevators have undergone five upgrades through the years, and the two in the Tower&rsquo;s west pillar were completely replaced in 2008. But they are still hydraulic, and they operate much like the original, simple-functioning versions of the machines.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Eiffelturm_Copyright_Bosch_Rexroth_AG.jpg" style="width: 595px; height: 446px;" title="The Eiffel Tower’s hydraulic systems for its elevators were designed and installed more than 100 years ago. Replacing one with a modern system that retained the simplicity of the original also cut energy use by 25%. (Photo courtesy of Bosch Rexroth AG)" /></p> <p><strong>Ingenious Engineering</strong></p> <p>The project leader for modernizing the elevator hydraulics was Dr. Olivier Ismeurt. Early on, he admired the yellowed, detail drawings of the components. But there were two shortcomings. First, the drawings did not show the overall hydraulic system. Second, the original condition of the elevators was no longer present following alterations made in the 1980s. Together with his team and the operating company <a href="http://www.tour-eiffel.biz/" target="_blank">Soci&eacute;t&eacute; d&#39;Exploitation de la Tour Eiffel (SETE)</a>, he examined and reconstructed the original technical solution from the early days of industrial hydraulics.</p> <p>Bosch Rexroth was instrumental in modernizing the complete hydraulic system of the elevator in the west pillar. The indirect hydraulic drive now in use follows Gustave Eiffel&rsquo;s original design idea. Ismeurt was impressed with the &ldquo;highly reliable solution&rdquo; developed by the engineers more than a century ago, especially considering their limited calculation and production methods.</p> <p><strong>Energy Use Cut by 25%</strong></p> <p>This is in stark contrast to the tools available for the elevator upgrade. <a href="http://sourceesb.com/manufacturers/search?q=bosch+rexroth" target="_blank">Bosch Rexroth</a> design experts used simulation software to check the static and dynamic behavior of the entire system (comprising the hydraulic, mechanical, and control systems) before anything was installed. Therefore, the entire team was confident that the sizing and function of all hydraulic components&mdash;and the overall system&mdash;would meet or exceed expectations.</p> <p>The new hydraulic system follows the original design configuration with two lift cylinders and three pressure-storage cylinders (accumulators). However, unlike the original system, valves do not control the ascent and descent motions. Instead, maximum speed, acceleration, and deceleration are controlled by variable-displacement pumps. As a result, the elevator, which today carries up to 1,000 passengers per hour, consumes about 25% less energy than the historical design.</p> <p>One particular challenge was placement of the hydraulic power unit&mdash;it had to be housed in a cellar, which could only be accessed through a small freight elevator. This meant technicians had to partially disassemble the larger and heavier components and reassemble them inside the cellar.</p> <p>Accessing the machinery room, in which the cylinder had to be installed, was no picnic either. &ldquo;I will certainly never forget how the 18-meter-long (59 ft.) cylinders were lowered with centimeter-like precision into the machinery room,&rdquo; recalls Olivier Soret, hydraulics technician at Bosch Rexroth, who was responsible for the commissioning of the Eiffel Tower hydraulics.</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/eiffel-tower-gets-lift-hydraulics#comments Entertainment Hydraulic Pumps & Motors Fri, 05 Aug 2016 18:52:00 +0000 39581 at http://hydraulicspneumatics.com Muscle-Powered Hydraulics Features Position Feedback http://hydraulicspneumatics.com/hydraulic-pumps-motors/muscle-powered-hydraulics-features-position-feedback <div class="node-body article-body"><table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/muscle-powered-hydraulics-features-position-feedback-pdf-download">Download this article in .PDF format</a><br /> This file type includes high-resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Lead-image-Macif.jpg" style="width: 595px; height: 335px;" title="Francois Gabart’s MACIF sailboat uses manually powered hydraulics to control the 100-ft. trimaran and Hall-effect sensors to monitor position of critical control surfaces. (Image copyright© JM Liot/DPPI/Macif)" /></p> <p>Francois Gabart, a French champion of solo offshore sailing, completed his first solo win on board his new 100-ft. trimaran, MACIF, when he crossed the finish line of The Transat bakerly off New York in the Ultime class category. In 2013, Gabart became the youngest-ever winner of the Vend&eacute;e Globe solo round-the-world race, covering an official distance of 3,050 nautical miles in 8 days, 8 hours, 54 minutes and 39 seconds.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/marine-offshore/hydraulics-serves-aussie-navy">Hydraulics Serves Aussie Navy</a></p> <p><a href="http://hydraulicspneumatics.com/blog/why-you-dont-want-your-hydraulics-wet-and-warm">Why You Don&#39;t Want Your Hydraulics Wet And Warm</a></p> <p><a href="http://hydraulicspneumatics.com/marine-offshore/deep-seas-push-hydraulic-system-boundaries">Deep Seas Push Hydraulic-System Boundaries</a></p> </div> <p>The MACIF, capable of sustained speeds of 40 knots, measures 21 m across, weighs 14.5 tonnes, and has sail areas of 430/650 m<sup>2</sup>. Its huge rotating wingmast can be canted to windward to generate more power while reducing the downward force on the leeward float. The boat also has a retractable V-shaped foil in each float, and the pitch can be manually adjusted.</p> <p>MACIF represents a departure in how these multi-hulled vessels are being sailed, with both steering positions inside a cabin. This area looks something like a ship&rsquo;s bridge. Behind that is a &ldquo;cuddy cabin&rdquo; on the same level, which houses a bunk, seat, and navigation area. The MACIF represents the state of the art in ocean-sailing technology, with rigid carbon-fiber hulls and curved dagger boards that are designed to generate lift to raise the boat out of the water and reduce friction.</p> <p><strong>Manually Powered Hydraulics</strong></p> <p>Much of the boat&rsquo;s control is powered from the manually driven pumps&mdash;called grinders&mdash;that transmit hydraulic power for several of hydraulic cylinders that move the foils, mast, dagger board, and steering. Some of the cylinders contain position sensors, which transmit position information to displays back in the cabin. Although the position feedback signal does not provide any control, it lets Gabart monitor the position of the mast and dagger board without having to leave the cabin, which is especially valuable in poor weather.</p> <p>Gabart says boat and sail designs are fairly mature at this point, but he believes electronics are going to be much more important in ocean racing. His role as a lone skipper is increasingly like that of a pilot on a fully automated airliner: Instead of steering the boat, he monitors the systems and tries to optimize performance to squeeze an extra knot or two of speed out of the given conditions.</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Rota-cylinder-sensor.jpg" style="width: 595px; height: 335px;" title="Rota Engineering’s Hall-effect sensor is mounted to the OD of hydraulic cylinders on the Macif, which prevents reducing the rods’ buckling strength and simplifies installation and replacement over in-cylinder installation." /></p> <p>The hydraulic-cylinder position feedback signals are generated by Hall-effect linear transducers from <a href="http://www.rota-eng.com" target="_blank">Rota Engineering</a>. The firm&rsquo;s linear transducers are usually installed inside a cylinder by boring into the center of the cylinder&rsquo;s piston rod. This setup provides a compact assembly and protects the sensor inside the cylinder&rsquo;s relatively secure environment. However, with the MACIF, the transducers&rsquo; sensing elements mount onto the OD of the cylinder tube.</p> <p>A small magnet embedded in the piston transmits a position signal to the sensing element through the cylinder wall. This ensures no reduction in piston-rod buckling strength and allows for easy installation and replacement without having to remove the cylinder.</p> <p>Hall-effect transducers use a well-proven technology offering non-contact operation with analog or digital output in a compact, weather- and pressure-proof housing featuring resolution to 0.1 mm. The external mounting is also possible with carbon-steel cylinders with wall thicknesses of up to 12 mm. Moreover, the transducers are highly resistant to high shock and vibration.</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/muscle-powered-hydraulics-features-position-feedback#comments Cylinders & Actuators Marine & Offshore Hydraulic Pumps & Motors Fri, 05 Aug 2016 18:07:00 +0000 39561 at http://hydraulicspneumatics.com Hydraulics & Pneumatics Products of the Week (8/5-8/12) http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulics-pneumatics-products-week-85-812 <div class="node-body gallery-body"><p>This week&#39;s H&amp;P&nbsp;product gallery includes a pneumatic gripper, a hydraulic-disk motor,&nbsp;and compressors.&nbsp;</p> </div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulics-pneumatics-products-week-85-812#comments Products Hydraulic Pumps & Motors Hydraulic Valves Fri, 05 Aug 2016 16:08:00 +0000 39531 at http://hydraulicspneumatics.com Troubleshooting Challenge: O-ring Installation Causes Motor to Overload http://hydraulicspneumatics.com/hydraulic-pumps-motors/troubleshooting-challenge-o-ring-installation-causes-motor-overload <div class="node-body article-body"><p>A student attending a basic hydraulic school at one of our distributors was having a problem with a hydraulic stamping machine at a metal fabricating plant. The plant&rsquo;s maintenance people had replaced all of the O-rings on stack valves mounted on a manifold. When they started up the machine, the electric motor circuit driving the pump kept tripping from overload. He explained that the machine had worked fine for several years other than the recent problem of the O-rings leaking.&nbsp;</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/hydraulic-valves/troubleshooting-challenge-hydraulic-system-overheats-aluminum-recycling-plant">Troubleshooting Challenge: Hydraulic System Overheats in Aluminum Recycling Plant</a></p> <p><a href="http://hydraulicspneumatics.com/cylinders-actuators/troubleshooting-challenge-leaking-cylinder-puzzles-expert">Troubleshooting Challenge: Leaking Cylinder Puzzles Expert</a></p> <p><a href="http://hydraulicspneumatics.com/hose-tubing/troubleshooting-challenge-hoses-pull-away-fittings">Troubleshooting Challenge: Hoses Pull Away from Fittings</a></p> </div> <p>The student said a mechanic at the plant ordered a replacement motor, even though the machine was working fine before the new O-rings were installed. The new motor overloaded, just like the one removed by the mechanic. The maintenance people then considered installing a larger-horsepower motor, and the student told them he did not think it would solve their problem.</p> <p><a href="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/TroubleshootingART_big.gif" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/TroubleshootingART_big.gif" style="width: 595px; height: 385px;" title="(Click image to enlarge)" /></a></p> <p>The student contacted us and asked if we could help troubleshoot the problem. We asked him for a copy of the schematic, shown above, and reviewed it with the class. The stack valves from <a href="http://www.sunhydraulics.com/" target="_blank">Sun Hydraulics</a> were all ISO-3 size, and worked with directional valves from <a href="http://sourceesb.com/manufacturers/search?q=bosch+rexroth" target="_blank">Bosch Rexroth</a>.</p> <p>From the information given, can you determine why changing the O-rings would cause the motor to overload?</p> <p><strong>Find the Solution</strong></p> <p>Think you know the answer to this month&rsquo;s problem? Submit your solution by emailing Mindy Timmer at <a href="mailto:timmer@cfc-solar.com">timmer@cfc-solar.com</a>. All correct solutions submitted by August 29, 2016 will be entered into a random drawing for a $50 gift card. The winner will be notified, and his or her name will be printed in a future issue. Only one gift card will be awarded to any participant within a calendar year.</p> <p>Congratulations to Mike Josefiak, mechanical engineer at Greenerd, Nashua, N.H., who won our July puzzler by having his name picked from those who correctly answered that month&rsquo;s problem. A $50 gift card is in the mail to him.</p> <p><strong>Solution to Last Month&rsquo;s Problem: <a href="http://hydraulicspneumatics.com/hydraulic-valves/troubleshooting-challenge-hydraulic-system-overheats-aluminum-recycling-plant" target="_blank">Hydraulic System Overheats in Aluminum Recycling Plant</a></strong></p> <p>The aluminum recycling plant&rsquo;s overheating problem was caused by the pilot-pressure relief system being connected to the main system pressure. The plug isolating the two pressure systems had an orifice hole through its center. This allowed the higher system pressure to force oil across the orifice and over the pilot-pressure valve, which was set at 75 psi.</p> <p><a href="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Accumulator-W-Callouts_big.gif" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Accumulator-W-Callouts_big.gif" style="width: 595px; height: 354px;" title="(Click image to enlarge)" /></a></p> <p>Unfortunately, the pilot relief was a small, directly operated type, and its setting increases with flow. The orifice plug is normally supplied on internally piloted valves. Removing this plug increases the shifting speed of the main spool and can cause unwanted shock.</p> <p>The orifice pressure drop, added to the pilot-relief setting, caused the heat buildup. Installing a solid plug in place of the orifice plug solved the problem.</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/troubleshooting-challenge-o-ring-installation-causes-motor-overload#comments Hydraulic Pumps & Motors Hydraulic Valves Seals Fri, 05 Aug 2016 13:19:00 +0000 39551 at http://hydraulicspneumatics.com Linde Hydraulics Opens Energy-Saving Facility in Germany http://hydraulicspneumatics.com/news/linde-hydraulics-opens-energy-saving-facility-germany <div class="node-body article-body"><p>In an inaugural ceremony, Linde Hydraulics GmbH &amp; Co. KG, (<a href="http://www.linde-hydraulics.com" title="www.linde-hydraulics.com">www.linde-hydraulics.com</a>) a manufacturer of drive systems including hydraulic power transmissions for heavy-duty applications, opened its new main plant in Aschaffenburg, Germany. After completing its spin-off process from the KION group in 2013, Linde Hydraulics has been taking steps to advance its international growth, adding new research and development activities, an active distribution network in the growth region of China, and planning multimillion-euro investments over the next three to five years.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/news/spousal-team-takes-ownership-pirtek-space-coast-center ">Spousal Team Takes Ownership of PIRTEK Space Coast Center</a></p> <p><a href="http://hydraulicspneumatics.com/news/expanded-rd-facility-advance-sealing-product-line">Expanded R&amp;D Facility to Advance Sealing Product Line</a></p> <p><a href="http://hydraulicspneumatics.com/controls-instrumentation/wabco-acquires-mico-inc-supplies-pneumatic-and-hydraulic-braking-worldwide">WABCO Acquires MICO Inc., Supplies Pneumatic and Hydraulic Braking Worldwide</a></p> </div> <p>The 22,000 m<sup>2</sup> production and assembly hall and extendable office complex will house 700 employees. Tan Xuguang, chairman and CEO of Weichai Power, majority stakeholder in Linde Hydraulics, said, &ldquo;This investment in the new, enlarged plant in Aschaffenburg is a clear signal of our confidence in the innovative power and the long-term growth potential of Linde Hydraulics&rsquo; main location. We will also provide incentives for successful expansion into Asian markets from here in future.&rdquo;</p> <p>The facility features environmentally conscious equipment that communicates energy-consumption rates with energy savings and recovery systems in the building, seamlessly coordinating heat exchange and power generation to use as little energy as possible. The ISO 50001-certified plant will produce up to 150,000 hydraulic pumps and motors and 50,000 assembly kits for final assembly in other plants.&nbsp;</p> <p>&ldquo;We place particular importance on energy-efficient products, such as our hydraulic start-stop system. In commissioning this project, we have not only optimized the structure of our plant in order to achieve considerably better interdisciplinary cooperation, we have also further optimized the plant itself,&rdquo; said Dr. Steffen Appel, a member of company management and responsible for the project. &ldquo;I would like to thank all parties involved in the project who completed it not only on time, but also within budget.&rdquo;</p> </div> http://hydraulicspneumatics.com/news/linde-hydraulics-opens-energy-saving-facility-germany#comments News Thu, 04 Aug 2016 19:45:00 +0000 39541 at http://hydraulicspneumatics.com <p>Linde Hydraulics recently opened its new main facility in Aschaffenburg, Germany, and will support more than 700 jobs in manufacturing and services.</p> Second-Quarter Manufacturing Report Available for Download http://hydraulicspneumatics.com/news/second-quarter-manufacturing-report-available-download <div class="node-body article-body"><p>Looking to provide outlook for the next quarter, <a href="http://ioadvisors.com" target="_blank">InterOcean Advisors LLC</a>&nbsp;released its Manufacturing Update for the second quarter of 2016. &nbsp;The update illustrates changes in valuation metrics by industry, covering aerospace and defense, automotive, building products, plastics and packaging, and others.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/cylinders-actuators/market-report-explores-hydraulic-cylinder-industry ">Market Report Explores Hydraulic Cylinder Industry</a></p> <p><a href="http://hydraulicspneumatics.com/construction/construction-equipment-market-builds ">Construction Equipment Market Builds</a></p> <p><a href="http://hydraulicspneumatics.com/blog/aem-releases-june-midyear-tractor-and-combine-report">AEM Releases June, Midyear Tractor and Combine Report</a></p> </div> <p>The report provides statistics on global forces that impact U.S. manufacturing such as oil and steel prices; it produces the overall status of U.S. manufacturing by examining leading economic indicators that impact it, including the purchasing managers&rsquo; index (PMI), manufacturers&rsquo; new orders, consumer confidence, and housing starts. The IOA Manufacturing Index closely tracks its results to the S&amp;P 500 Index in the second quarter.</p> <p>The update concludes that U.S. manufacturing in the second quarter &ldquo;lacks clear direction,&rdquo; and that the index steadiness reflects the opposing forces of price increases in commodities like oil and steel and improving consumer sentiment, both of which are offset by soft international demand. By industry, the metals index displayed the strongest growth, while the automotive index was the weakest.</p> <p><em>To view or download the report, go to </em><a href="http://bit.ly/HP1608MfgUpdate" target="_blank"><em>bit.ly/HP1608MfgUpdate</em></a><em>.</em></p> </div> http://hydraulicspneumatics.com/news/second-quarter-manufacturing-report-available-download#comments Other Industries News Wed, 03 Aug 2016 14:36:00 +0000 39521 at http://hydraulicspneumatics.com Hydraulic-Electric Analogies: Power Conditioning http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-power-conditioning <div class="field-deck"> Extreme temperatures, whether high or low, can cause catastrophic and irreversible failure in both electric and hydraulic systems. What follows is a study in how heat is generated in the circuits. </div> <div class="node-body article-body"><table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/hydraulic-electric-analogies-power-circuits-pdf-download">Download this article in .PDF format</a><br /> This file type includes high-resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> <p>Power in electric and hydraulic systems is perfectly analogous. For hydraulic circuits, power is calculated as the product of flow and pressure:</p> <p>Power = <em>W</em> = <em>P</em> &times; <em>Q</em></p> <p>where <em>W</em> is power (watts), <em>P</em> is pressure (N/m<sup>2</sup>), and<em> Q</em> is flow (m<sup>3</sup>/sec).</p> <p>Electrical power is the product of voltage and current:</p> <p><em>W</em> = <em>V</em> &times; <em>I</em></p> <p>where <em>V</em> is voltage (N&bull;m/coulomb) and<em> I</em> is current (coulomb/sec).</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-stepper-motors">Hydraulic-Electric Analogies: Stepper Motors</a></p> <p><a href="hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-internal-gear-pumps">Hydraulic-Electric Analogies: Internal Gear Pumps</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-part-2-adding-variable-positive-displacement">Hydraulic-Electric Analogies: Part 2&mdash;Adding a Variable to Positive Displacement</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-simple-and-efficient">Hydraulic-Electric Analogies: Simple and Efficient</a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-hydraulic-power-conversion-part-4">Hydraulic-Electric Analogies: Hydraulic Power Conversion, Part 4</a></p> </div> <h3>Self-Heating Hydraulics</h3> <p>Any time a hydraulic flow undergoes a drop in pressure, or any time a current undergoes a drop in voltage, energy converts to heat because of a path restriction. If energy is not producing force or torque and speed, then it is inefficient, causing self-heating in the circuit. In electrical circuits, the heat energy is generated in, and imparted to, the element that contains the friction.</p> <p>In hydraulic circuits, heat energy is caused by the shearing of the fluid as it squeezes through small passages. The fluid then transports the heat to other parts of the circuit. Whether electric or hydraulic, self-heating can cause damage if it is not transferred out of the circuit. Heat exchangers are the method of choice for either system.</p> <p>A common description applied to heat generation is that it is a consequence of the losses in the system. If all components were 100% efficient, self-heating would not be a problem.</p> <p>In hydraulic machinery, temperatures that are too low will cause oil-based fluids to become so viscous whereby the pump cannot move the fluid. All of the pump&rsquo;s work will be directed toward shearing the fluid, resulting in highly localized hot spots that create their own set of problems, especially if there is insufficient fluid throughput to replace the heated oil with cold oil. Self-destruction of the pump can occur.<a href="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Motion-Control-Fig-1.gif" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Motion-Control-Fig-1.gif" style="width: 300px; height: 223px; float: right; margin-left: 4px; margin-right: 4px;" title="1. The water-cooled heat exchanger has two isolated conductor volumes with flows arranged so that the warmest oil is conducting heat into the warmest water." /></a></p> <p>If the fluid is water-based, the obvious result is that the fluid will freeze. Water-based fluids are viable in indoor applications, but cannot be used for mobile machinery in freezing environments.</p> <p>To alleviate low-temperature problems with oil-based fluids, heaters are occasionally installed to sustain temperature during shutdown periods. In extreme arctic conditions, diesel engines may be kept running 24/7 with some hydraulic fluid circulating at all times.</p> <p>Clearly, very low temperatures are a problem with hydraulic equipment; therefore, self-heating effects can be put to use to protect against cold. However, the problem is that the self-heating process is going on the entire time the machine is running, and excessively high temperatures are a continuing problem in both systems.</p> <p>Hydraulic systems, like electric systems, will recover from extreme cold, provided that mechanical power is not applied to the pump input shaft. That is, permanent damage is not the result of the excessively low temperature alone; rather, it is the combination of cold and trying to get the pump to turn over mechanically.</p> <h3>Friction and Resistance</h3> <p>As already stated, friction is the cause of all heating in all functioning systems. Mechanical types of friction are caused by the relative motions of moving parts, plus the friction that causes shearing of the fluid as it is forced through small clearances.</p> <p>Resistance is a kind of electrical friction. It is measured and quantified in ohms, the MKS unit of electrical resistance. Current through resistances causes self-heating effects. All electrical elements have some resistance. Resistance is as unavoidable in electric circuits as friction is in hydraulic circuits. Hydraulic resistances have no quantifying unit of measure, a fact that is holding back the development of useful circuit-analysis theorems and methods.</p> <p>Resistances<img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/04/pullquote260px.gif" style="width: 260px; height: 204px; float: left; margin-top: 6px; margin-bottom: 6px;" /> arise in hydraulic circuits in only a handful of ways, but they are well known. The first involves the leakage paths that result from inter-part clearances inside pumps and motors, and to some extent, in valves. The clearances are necessary to allow for relative motion and to lubricate those mating surfaces. The lower the resistances, the greater the leakage flow and the more heating of the fluid at a given pressure drop.</p> <p>Valve control is notoriously inefficient. It is referred to as the &ldquo;energy loss method of control.&rdquo; That is, the pump generates more power than is required by the load, and the operator changes the amount of opening of the valve (it is a variable resistance) to absorb the excess power and deliver just the right amount to the load.</p> <p>There are series restrictions to fluid flow in all circuit elements, including the plumbing, flow-distribution manifolds, and valve subplates. Each restriction results in the fluid undergoing a drop in pressure and a subsequent rise in temperature. Every turn and elbow in the flow path contributes to the pressure drops.</p> <h3>Hydraulic Heat Exchangers</h3> <p><strong><a href="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Motion-Control-Fig-2.gif"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Motion-Control-Fig-2.gif" style="width: 300px; height: 261px; float: right; margin-left: 4px; margin-right: 4px;" title="2 To improve cooling, air-to-oil heat exchangers often incorporate a fan to increase air flow." /></a></strong>Ridding the system of the heat is the work of the heat exchanger. In hydraulics, there are two basic types: Water-over-oil, as shown in simplified schematic in <em>Fig. 1</em>, and air-to-oil depicted in <em>Fig. 2</em>.</p> <p>Water-to-oil heat exchangers are viable and often used in in-plant, stationary applications, because there is usually some source of cooling water. It consists of an outer shell that carries the cooling water, and an inner tube that carries the hydraulic fluid to be cooled.</p> <p>Of interest is the fact that the two internal fluid flows are opposite to one another. The oil moves from right to left in the figure while the water moves from left to right. This method puts the warmest water in proximity to the warmest oil and vice versa. It assures that there is always a temperature gradient between the two flowing media.</p> <p>Air-to-oil heat exchangers are vital to mobile equipment because they use the ambient air as the means for carrying the heat from the hydraulic circuit. Just a quick glance at the heat exchanger in <em>Fig. 2</em> shows its similarity to an automobile&rsquo;s radiator. They use exactly the same technology, including a fan to stimulate adequate air flow through the radiator cooling coils. Thin vertical tubes carry the hydraulic fluid. Very thin horizontal fins are attached to the tubes, providing heat-radiating area&mdash;a good friend of effective heat transfer.</p> <h3>Electrical Self-Heating and Heat Exchangers</h3> <p>Heat exchangers used for electric circuits are called <em>heat sinks</em>. Heat sinks need to be applied to the component that has the resistance, because electrical heat energy is imparted to that component. In contrast to hydraulic circuits, and as stated earlier, hydraulic heat energy is imparted to the fluid and can be carried to other parts of the circuit for removal. Electrical heat has to be carried away at the point of generation.</p> <p><a href="595" target="_blank"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2015/03/Motion-Control-Fig-3.gif" style="width: 300px; height: 182px; float: left; margin-left: 4px; margin-right: 4px;" title="3 A basic heat sink has a base for contacting the heated circuit component and a multiplicity of fins for maximizing radiation area." /></a>A heat sink, depicted in simplified form in <em>Fig. 3</em>, consists of a solid base, usually made of aluminum because of its heat-conducting characteristics, plus a number of fins in a variety of shapes. The heat sink in the figure can be found attached to the central processor unit in your computer.</p> <p>The heat sink&rsquo;s underside is flat and smooth, and attaches to the smooth and flat top of a processor chip with heat-conducting adhesive. Due to the very high clock speeds and extremely high transistor density of modern processor chips, self-heating becomes severe to the point where a fan must be mounted on top of the heat sink to increase air flow over the fins.</p> <h3>Resistance, Conductivity, and Self-Heating</h3> <p>Just as conduit paths (plumbing, subplates, and manifolds) in hydraulic circuits have unavoidable restrictions and tortuosity, so do electrical circuits. Copper is the wire material of choice, but silver and gold may be called for when the lowest possible conductor resistance is required. No matter the conductor material, conductivity is not perfect, so resistance becomes inevitable.</p> <p>Power loss and self-heating are equally inevitable, but it is a matter of degree relative to each individual component. The current through a light-emitting diode may not heat up enough to require heat-removing equipment, but it may be the case for an electric motor or the voltage regulator in a computer&rsquo;s power supply.</p> <p>Like electric motors, solenoids are made of wound coils of wire wrapped around some iron core material. Laminated cores reduce the internal heating effects from core losses. Both the wire resistance&mdash;often referred to as <em>copper losses</em> in the jargon&mdash;and the core losses contribute to self-heating.</p> <p>Electric motors, whether ac or dc, have self-heating and many implement built-in cooling features. One method is to cast cooling fins into a motor&rsquo;s external housing. Other motors have a small fan attached to the rotor with end openings to allow for constant flushing of air through the innards of the machine.</p> <p>Electric and hydraulic systems can operate at temperatures above the threshold of human pain. Both can operate reliably and continuously at temperatures that are downright dangerous to man and beast and require respect and protective design practices. Because hydraulic self-heating is imparted to the circulating fluid, the entire circuit is at elevated temperature at nearly every point and element.</p> <p>Electric circuits confine self-heating to certain circuit components. An ac solenoid may cause burns if touched, but the driver amplifier controlling it may be at or near room temperature. However, caution is the byword when working with all power-conversion equipment. It may be hot.</p> <p><a href="http://sourceesb.com" target="_blank"><img alt="" src="/site-files/globalpurchasing.com/files/uploads/2016/07/15/SourceESB_Lookin_For_Parts_Banner.jpg" style="width: 600px; height: 46px;" /></a></p> </div> http://hydraulicspneumatics.com/hydraulic-pumps-motors/hydraulic-electric-analogies-power-conditioning#comments Hydraulic Pumps & Motors Other Components Wed, 03 Aug 2016 13:22:00 +0000 39501 at http://hydraulicspneumatics.com Synchronizing a Metals Press Yields Perfect Parts http://hydraulicspneumatics.com/other-technologies/synchronizing-metals-press-yields-perfect-parts <div class="field-byline"> Jason Palmer, Delta Computer Systems Inc. </div> <div class="node-body article-body"><table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/synchronizing-metals-press-yields-perfect-parts-pdf-download">Download this article in .PDF format</a><br /> This file type includes high resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> <p>The titanium hot forming process requires a high degree of precision. It involves heating parts and pressing them slowly in successive stages, waiting, and reheating several times before the process is complete. When large parts are involved, multiple hydraulic cylinders may be used to ensure that uniform positioning and force are being applied across the part. Such is the process employed by Missouri Metals, St. Louis, to manufacture precision titanium components for the aerospace industry.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href=" http://hydraulicspneumatics.com/news/bridging-gap-between-education-and-advanced-manufacturing">Bridging the Gap Between Education and Advanced Manufacturing</a></p> <p><a href="http://hydraulicspneumatics.com/cylinders-actuators/advanced-machine-tools-revitalize-cylinder-manufacturing">Advanced Machine Tools Revitalize Cylinder Manufacturing</a></p> <p><a href="http://hydraulicspneumatics.com/cylinders-actuators/pneumatic-rotary-actuators-back-school">Pneumatic Rotary Actuators: Back to School</a></p> </div> <p>The company needed a new press to manufacture long, narrow parts of the metal&mdash;up to 28 in. by 128 in.&mdash;and Maintenance Manager Sam Moore decided it should be capable of pressing two parts at the same time. As a result, four hydraulic cylinders were used, two for each end of the press <em>(Fig. 1)</em>. For pressing the longest parts, all four cylinders would be used for the cycle. If shorter parts were to be used, the system could be split and operated as two independent presses, with two cylinders each.</p> <p><img alt="Fig. 1" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/02/Delta-Fig-1.gif" style="width: 595px; height: 446px;" title="1. The Missouri Metals titanium press is capable of pressing two parts at a time. Each side of the press uses two hydraulic cylinders to ensure that pressure is evenly applied." /></p> <p>The new press operates at 1,700&deg; F. The platens have heaters in them to soften the titanium for forming. The parts need to be pressed in stages; if the pressing goes too quickly, the material could crack. The solution is to close the press so that the platens just touch the metal, and initiate a pre-heat stage to make the titanium pliable. The press is then moved a few inches and the position is held for a time period, after which the process is repeated.</p> <p>&nbsp;The final stage of the press operation is to apply a prescribed force, which can be up to 400 tons. &ldquo;We can do up to 10 different press operations before we go to tonnage,&rdquo; says Moore, &ldquo;with position-hold times varying between one and five minutes.&rdquo;</p> <p>To develop the new titanium press, Missouri Metals contracted Valtech Hydraulics Inc., St. Louis, to design the hydraulics. They in turn subcontracted to John Henry Foster Inc. (JHF), also based in St. Louis, to implement the electronic controls.</p> <p><img alt="Fig. 2" height="316" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/02/Delta-Fig-2.gif" style="margin: 5px; float: left;" title="2. The RMC 150 motion controller can simultaneously control up to eight motion axes." width="322" />The electrohydraulic motion controller required a unit that could control both position and force&mdash;along with transitioning smoothly between these modes. The controller also needed to be able to synchronize the motion of multiple axes, which must move simultaneously. To fulfill these requirements, the RMC151 motion controller, available with up to eight axes of control from Delta Computer Systems <em>(Fig. 2)</em> was selected.</p> <p>&ldquo;After 20 years of industrial maintenance experience, the one thing that I&rsquo;ve learned is to use a reputable product that doesn&rsquo;t change frequently and for which spare parts are always available,&rdquo; says Moore, who ratified the decision to use the Delta controller.</p> <p>The four cylinders in the new Missouri Metals titanium press are mounted beneath the lower platen <em>(Fig. 3)</em> and push vertically up to close the press, which can operate in two modes: full platen (to press a single, very long part) and split platen (to independently press two parts).</p> <p>Both modes of operation are set up using the custom feedback and cascade control features of Delta Computer Systems&rsquo; RMCTools development software.</p> <h3>Custom Feedback</h3> <p>Custom feedback is a programming option that enables the motion controller to perform mathematical or logical operations on a feedback value, or alternately, to combine the inputs from multiple feedback sources. The result is then incorporated as a single feedback value into the closed-loop control algorithm. In the Missouri Metals system, the cylinder positions must remain level during press operation.</p> <p>To accomplish this, the position inputs from the four position transducers are averaged using custom feedback, which provides a target position for all cylinders to hit during the next control cycle. In addition, individual force values derived from each cylinder&rsquo;s differential pressure transducers are summed to calculate the total system tonnage value, which is then compared with the force target value in the controller to use in its own closed-loop force calculations.</p> <p><img alt="Fig. 3" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/02/Delta-Fig-3.gif" style="width: 595px; height: 397px;" title=" 3. Here’s a close-up of the cylinders, which move upward to form the parts in the Missouri Metals press." /></p> <h3>Cascade Control</h3> <p>Cascade control is a control algorithm in which the output of one control loop provides the target for another loop. In the Missouri Metals design <em>(Fig. 4)</em>, the inner loop run by each of the four individual cylinder axes is responsible for ensuring that its cylinder extends to the required position and delivers the set amount of force. The outer loops are responsible for determining the total response of the entire press system.</p> <p>As described above, the target generated for the outer position loop using custom feedback is used to keep the cylinders perfectly level, while the target generated for the outer force loop ensures the forces exerted by each of the four cylinders add up to the predefined force set point. The inner and outer control loops run simultaneously, yet are independent of each other. This results in a perfectly level press platen delivering the set amount of force with no mechanical guides.</p> <p>The cascade-control mode is set up by dedicating two of the controller&rsquo;s motion axes to each cylinder. The &ldquo;inner loop&rdquo; is set up as a regular and faster closed-loop control axis and generates an output to the cylinder&rsquo;s servo-quality proportional valve. The &ldquo;outer loop&rdquo; (the slower loop) is set up as a cascade axis, whose control output is used internally to the motion controller to provide a motion target to the inner loops. In operation, the overall system is controlled by writing commands to the outer-loop axis. All of this functionality is set up via simple write operations to registers within the RMC151&mdash;no complex motion programming needs to be done.</p> <p><img alt="Fig. 4" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/02/Delta-Fig-4.png" style="width: 596px; height: 369px;" title="4. This diagram shows the cascade loops flow. " /></p> <p>The press uses feedback from magnetostrictive linear displacement transducers (LDTs) attached to the sides of the cylinders to measure the position of each cylinder, and pressure transducers mounted in the cylinders (one on each side of the piston) as feedback to measure the force being applied by each cylinder. The outputs of the motion controller connect to four proportional servo valves that operate the cylinders.</p> <p>During the initial steps of the cycle, the motion controller is set to control the position of the outer loop, ensuring that the individual cylinders are level while monitoring and limiting the total force being applied. The final step seamlessly transitions to force control to ensure that the press applies the specified tonnage.</p> <p>&ldquo;With the Delta RMC controls we&rsquo;ve now got absolute control of position and pressure,&rdquo; says Moore, &ldquo;so we can run four cylinders simultaneously, or we can run two different press functions at the same time, and get a perfect part every time.&rdquo;</p> <p>The system also contains a PLC for supervisory control. The Delta RMC connects to the PLC via Ethernet for PLC functions that include recipe storage, downloading motion instructions, monitoring motion results, and power-unit monitoring. A touchscreen operator interface <em>(Fig. 5)</em> connects via Ethernet to both the PLC and the Delta RMC for operator messaging, power-unit control, sequence control, and real-time monitoring of cylinder positions and forces.</p> <p>&ldquo;Synchronization is a big portion of our requirements,&rdquo; continues Moore. &ldquo;With the Delta RMC controlling the position of the cylinders, both cylinders are kept within a couple thousandths of an inch of each other during press operation in order to maintain the platens completely flat.&rdquo;</p> <p><img alt="Fig. 5" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/02/Delta-Fig-5.png" style="width: 595px; height: 347px;" title="5. Displayed is the operator interface. " /></p> <p>Missouri Metals&rsquo; older machines weren&rsquo;t able to maintain this level of precision because the quality of production depended heavily on the machine operator. &ldquo;When it&rsquo;s up to a person to open a hydraulic valve, you could have mistakes which result in wasted material,&rdquo; says Moore. &ldquo;Now, we keep from scrapping parts.&rdquo;</p> <p>In addition, operator productivity was limited in the case of older machines by the fact that an operator needed to be in attendance at the machine constantly during production. Now, the operator turns on the machine, selects the program, and pushes the &ldquo;up&rdquo; button. Then the operator places the part, presses the down button, and can move on to another machine. This makes machine operators more productive.</p> <p>&ldquo;We spent about $2 million to buy one of our other titanium presses from a manufacturer,&rdquo; says Moore. &ldquo;Because we went with best-in-class-components from different vendors, and built this machine in-house with a couple of integrators&rsquo; help, we were able to put this new press in production for less than half that cost.&rdquo;</p> <p><em>Jason Palmer is regional sales manager at <a href="http://www.deltamotion.com" target="_blank">Delta Computer Systems Inc.</a>, Battle Ground, Wash. For more information.</em></p> <p><a href="http://sourceesb.com/"><img alt="" src="/site-files/electronicdesign.com/files/uploads/2016/07/14/SourceESB_Lookin_For_Parts_Banner.gif" style="width: 595px; height: 46px;" /></a></p> <table border="0" cellpadding="0" cellspacing="0" width="570"> <tbody> <tr> <td width="41"><img src="http://insidepenton.com/electronic_design/adobe-pdf-logo-tiny.png" /></td> <td style="padding-left: 0px;" width="459"><a href="/datasheet/synchronizing-metals-press-yields-perfect-parts-pdf-download">Download this article in .PDF format</a><br /> This file type includes high resolution graphics and schematics when applicable.</td> </tr> </tbody> </table> </div> http://hydraulicspneumatics.com/other-technologies/synchronizing-metals-press-yields-perfect-parts#comments Other Technologies Tue, 02 Aug 2016 18:42:00 +0000 39481 at http://hydraulicspneumatics.com Synchronizing a Metals Press Yields Perfect Parts (.PDF Download) http://hydraulicspneumatics.com/datasheet/synchronizing-metals-press-yields-perfect-parts-pdf-download <div class="node-body datasheet-body"><p>The titanium hot forming process requires a high degree of precision. It involves heating parts and pressing them slowly in successive stages, waiting, and reheating several times...</p> <p><strong>Register or sign in below to download the full article in .PDF format, including high resolution graphics and schematics when applicable.</strong></p> <div class="gatedLogin well"> <div class="contentPadding clearfix"> <h2>Register for Complete Access (Valid Email Required)</h2> <p><p><img height="auto" src="http://hydraulicspneumatics.com/site-files/hydraulicspneumatics.com/files/uploads/2015/08/full-wallchart.JPG" width="100%" />By registering on Hydraulics &amp; Pneumatics now, you&#39;ll not only gain access to , you&#39;ll also receive a complimentary copy of <em>Hydraulics & Pneumatics Wall Chart</em>.</p> </p> <div class="gatedLoginButtons gated-register-button"> <div class="button-region"> <a href="/penton_ur/nojs/user/register?source=gated&nid=39491&regmode=1" class="ctools-use-modal btn btn-branded btn-wide ctools-modal-register" title="Register at this site.">Register</a> </div> <div class="loginLinkText"> Already registered? <a href="/penton_ur/nojs/login" class="ctools-use-modal ctools-modal-log_in" title="">Log In</a> here. </div> </div> </div> </div> </div> Gold Tue, 02 Aug 2016 18:31:00 +0000 39491 at http://hydraulicspneumatics.com Hydraulic Troubleshooting: Do As I Say; Not As I Do! http://hydraulicspneumatics.com/blog/hydraulic-troubleshooting-do-i-say-not-i-do <div class="node-body blog-body"><p>If you&#39;ve read <a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=thth">The Hydraulic Troubleshooting Handbook</a>, you&#39;ll recall that I define hydraulic troubleshooting as a logical process of elimination which begins with checking the easy things first.<br /> <br /> The emphasis I put on investigating the easy things first may seem so elementary your inclination may be to disregard this advice. Certainly, if you DO follow a logical process of elimination, you will get a result - regardless of whether you check the easy things first or not. It&#39;s just that if you leave anything that&#39;s easy to check until last - you&#39;ll kick yourself for not giving it your attention in the beginning.<br /> <br /> A troubleshooting situation I was involved in recently illustrates this to a tee. If you&#39;re skilled in reading hydraulic schematics and wish to follow along, <a href="http://www.hydraulicsupermarket.com/circuit.html"><strong>the circuit is here</strong></a> [Hint: hover over the link and right-click to open it in a new window]. But even if you&#39;re not fluent in schematics, read on - because it&#39;s the moral of the story that&#39;s important.<br /> <br /> The machine in question is a fairground ride. You know the ones. Its designers seem to have one objective in mind - to get you to regurgitate the contents of your stomach. And I am talking from experience.<br /> <br /> When the passengers are strapped in, the boom of the ride is elevated by two lift cylinders (not numbered) top left of the schematic. Once elevated, hydraulic cylinder (58) retracts to remove a locking pin and the passenger carriage is rotated by motor (38).<br /> <br /> The main hydraulic pumps are electrically powered. In case of electricity failure or main pump failure, pump (74) powered by an internal combustion engine is used to recover the ride and unload the passengers.<br /> <br /> Prior to me receiving the call, there had been a power failure. When pump (74) was used to rotate the carriage to the locking position, rotation was found to be slow and when the carriage went over center - due to the boom not being absolutely vertical when raised - the carriage &#39;ran away&#39;.<br /> <br /> Analysis of the schematic revealed the over-running of the carriage was due to operator error. Load control valve (29) operates in one direction only - the direction of normal rotation. If the operator rotates the carriage in the opposite direction during recovery, over-run is possible.<br /> <br /> To prove this, I elevated the boom and rotated the carriage a full revolution in the correct direction using pump (74) and DCV (75). No over-run occurred. Conversely, over-run did occur, as expected, in the opposite direction.<br /> <br /> As an aside, it is not practical to prevent this problem by restricting DCV (75) to two positions. Because bi-directional rotation is desirable during recovery for precise positioning of the carriage for locking-pin engagement. But I did propose an alternative solution.<br /> <br /> While rotating the carriage using pump (74), I observed rotation speed was indeed painfully slow. But there were no noticeable rotation speed issues during normal operation. While there&#39;s a number of possible points at which flow could be escaping from this circuit, most of them are common to both normal and emergency operation situations.<br /> <br /> This focused my attention on the components that aren&#39;t common to both situations: pump (74), check valve (22) - on pump (17) and DCV (75) - which although not drawn as such, is mono-block type with integral relief valve.<br /> <br /> Suspecting pump (74) was the culprit, I flow tested it at connection P1. It tested OK. I then connected the flow meter across the service ports of DCV (75). Again, OK. This also eliminated relief valve (44), unloading valve (47), ball valve (77) and check valve (22) on pump (17).<br /> <br /> So continuing the logical process of elimination - what next? Looking again at the rotation manifold (circled on the drawing) - which is 30 feet in the air when the ride is operating - I cussed aloud at myself. With the ride in its parking position, I walked over to this manifold and sure enough, I got nearly two turns out of needle valve (37) in a clockwise direction.<br /> <br /> Other than the heat load, the amount of flow passing across this needle valve wasn&#39;t an issue during normal operation - due to the amount of flow available from the main pump. But it was very noticeable when using the much smaller flow available from the emergency pump.<br /> <br /> With the benefit of hindsight, needle valve (37) was the easiest and therefore the FIRST thing I should have checked. Oh sure, my logical process of elimination was always going to lead me to it. But had I checked it in the beginning - it would have been a five minute troubleshooting exercise instead of two hours!<br /> <br /> As this example demonstrates, not checking the easy things first when troubleshooting can be a costly mistake. And to discover six other costly mistakes you want to be sure to avoid with your hydraulic equipment, <a href="http://www.hydraulicsupermarket.com/track?p=handp&amp;w=smr"><strong>get &quot;Six Costly Mistakes Most Hydraulics Users Make... And How You Can Avoid Them!&quot; available for FREE download here</strong></a>.</p> </div> http://hydraulicspneumatics.com/blog/hydraulic-troubleshooting-do-i-say-not-i-do#comments Hydraulics At Work Tue, 02 Aug 2016 05:31:00 +0000 39471 at http://hydraulicspneumatics.com Industrial Growth Partners Acquires Des-Case Corp. http://hydraulicspneumatics.com/hydraulic-filters/industrial-growth-partners-acquires-des-case-corp <div class="field-byline"> Staff </div> <div class="node-body article-body"><p><a href="http://www.igpequity.com/" target="_blank">Industrial Growth Partners </a>(IGP), a San Francisco-based private equity firm, today acquired the parent company of &nbsp;<a href="http://descase.com/" target="_blank"><u>Des-Case</u> <u>Corporation</u> </a>for an undisclosed sum.</p> <div class="related-content"> <div class="related-label">Related</div> <p><a href="http://hydraulicspneumatics.com/news/des-case-acquires-oilmiser-product-line">Des-Case Acquires OilMiser Product Line </a></p> <p><a href="http://hydraulicspneumatics.com/hydraulic-filters/filtration-advice-experts">Filtration Advice from the Experts </a></p> <p><a href="http://hydraulicspneumatics.com/air-filters-and-frls/minimal-lubrication-maximum-life">Minimal Lubrication, Maximum Life</a></p> </div> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/04/IGPARTNERS_0.gif" style="width: 595px; height: 60px;" />IGP is a specialist private investment partnership with $2.2 billion in capital raised since inception that provides equity capital to industrial manufacturing companies. With a 20 year history in the industrial sector, IGP provides significant strategic and operational support to its portfolio companies and has extensive experience building global manufacturing businesses.</p> <p>IGP concentrates on leading, niche manufacturers of engineered products used in critical applications. It partners with management teams to pursue strategic initiatives focused on achieving long-term shareholder value.</p> <p>&ldquo;Des-Case brings a holistic perspective to the lubricant contamination-control market by not only providing the education and training needed to understand the benefits of contaminant-free lubricant, but also by providing innovative solutions to protect the lubricant at every critical point in its lifecycle,&rdquo; said a representative from IGP.&nbsp; &ldquo;As a market leader with a strong brand name and long-standing customer relationships with some of the world&rsquo;s largest manufacturers, we are confident in Des-Case&rsquo;s ability to continue to expand globally.&rdquo;</p> <p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/04/pullquoteWithital260px.gif" style="width: 260px; height: 284px; float: left; margin-top: 6px; margin-bottom: 6px;" />Private equity has invested in Des-Case 2013, when Pfingsten Partners, L.L.C. first acquired the company. &ldquo;We have enjoyed being a part of Des-Case&rsquo;s growth journey the past several years and are excited for their new opportunity with IGP,&rdquo; said a representative from Pfingsten. &ldquo;The Des-Case story is an exceptional one and we will continue to follow their progress and see what great things are in store for them.&rdquo;</p> <p>Des-Case was founded in 1983 when it brought the first desiccant breather to market. Now, it manufactures an array of specialty filtration products to improve process equipment and extend lubricant life for industrial plants worldwide. The company&rsquo;s solutions result in lower operating costs, environmental benefits, fewer repairs, and improved plant operations. Des-Case&rsquo;s trademarked and patented solutions are marketed through an extensive global distribution network, private label distributors and OEM partners.</p> <p>&ldquo;I am honored and excited to be a part of writing the next chapter in the Des-Case growth story alongside our valued customers, partners and investors,&rdquo; said Brian Gleason, president and CEO at Des-Case Corporation. &ldquo;IGP has over two decades of experience investing in the industrial sector with a proven track record of building world- class global businesses. We are looking forward to the partnership.&rdquo;</p> <p>The transaction was completed on July 6, 2016. The management team retained a significant ownership stake in the company. For more information on Des-Case, visit <a href="http://www.descase.com/">www.descase.com.</a></p> </div> http://hydraulicspneumatics.com/hydraulic-filters/industrial-growth-partners-acquires-des-case-corp#comments Hydraulic Filters Hydraulic Fluids News Mon, 01 Aug 2016 17:58:00 +0000 39461 at http://hydraulicspneumatics.com <p>Des-Case President and CEO, Brian Gleason explains to U.S. Tennessee State Representative, Diane Black how a Des-Case-produced&nbsp;visual oil analysis can be glass-mounted onto the side of equipment to help technicians&nbsp;monitor lubricant quality.</p> Fácil Monitoreo de las Condiciones de Contaminación http://hydraulicspneumatics.com/blog/f-cil-monitoreo-de-las-condiciones-de-contaminaci-n <div class="node-body blog-body"><p class="rtejustify">Los indicadores de contaminaci&oacute;n son dispositivos de advertencia que indican, ya sea de manera visual o electr&oacute;nica, que un elemento filtrante est&aacute; copado de contaminantes y que debe ser reemplazado o limpiado. Estos se activan cuando la ca&iacute;da de presi&oacute;n a trav&eacute;s del filtro excede un nivel predeterminado. En filtros que incorporan v&aacute;lvulas de bypass, el fluido contaminado pasar&aacute; a trav&eacute;s de la misma si el operador no le presta atenci&oacute;n a la advertencia del indicador en un tiempo prudencial. En aqu&eacute;llos que no tienen la v&aacute;lvula de bypass, si la advertencia no es atendida, la presi&oacute;n aumentar&aacute; hasta el punto que el desempe&ntilde;o del sistema se ver&aacute; degradado, el filtro falle, o la v&aacute;lvula reguladora de presi&oacute;n del sistema se abra.</p> <p class="rtejustify">El indicador est&aacute; configurado de manera de advertir mucho antes de que el elemento filtrante se tape por completo &ndash; generalmente unos 15 psid (1 bar) por debajo de la presi&oacute;n de bypass. Esto le da al operador suficiente tiempo para tomar acciones correctivas. La indicaci&oacute;n puede ser una se&ntilde;al visual en el filtro (bot&oacute;n que sobresale, luz, etc.). En las aplicaciones m&aacute;s cr&iacute;ticas, la se&ntilde;al del indicador puede ser utilizada para apagar el sistema, lo que obligar&aacute; a tomar acciones de inmediato.</p> <p class="rtejustify">Algunos usuarios instalan filtros sin indicadores, prefiriendo cambiar o limpiar los elementos filtrantes una vez se alcance un tiempo operativo determinado. Existen algunos riesgos al hacer esto: puede ser dif&iacute;cil establecer un plan de mantenimiento preventivo que sean confiable, debido a que la tasa de ingreso de contaminantes no es conocida y de hecho, puede variar con el tiempo y m&aacute;quina en cuesti&oacute;n.</p> <p class="rtejustify">La utilizaci&oacute;n de indicadores de contaminaci&oacute;n presentan dos beneficios principales: primero, eliminan la necesidad de adivinar cuando se tapa el filtro,. Por otro lado, eliminan el costo innecesario que implica el reemplazar los elementos muy pronto.</p> <p class="rtejustify"><strong>Configuraci&oacute;n de los Indicadores</strong></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/Tipos%20de%20indicadores%20HYDAC.jpg" target="_self"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/Tipos%20de%20indicadores%20HYDAC.jpg" style="width: 300px; height: 267px; margin: 10px; float: left;" title="Figura 1: Opciones de indicadores diferenciales estándar de Hydac" /></a>En la mayor&iacute;a de las aplicaciones, los indicadores son ajustados a 15 psid (1 bar) por debajo de la presi&oacute;n de apertura de la v&aacute;lvula bypass. Para filtros sin v&aacute;lvula, se ajusta 15 psid por debajo de la presi&oacute;n de reemplazo del filtro. Las v&aacute;lvulas bypass de Hydac para filtros de presi&oacute;n generalmente comienzan a abrir a 87 psid (6 bar), por lo que se ajusta el indicador para que sea accionado a 72 psid (5 bar). Los filtros de retorno Hydac generalmente inician el bypass a 43 psid (3 bar), por lo que el indicador es ajustado a 29 psid. (2 bar).&nbsp; Esto consecuentemente, le da tiempo al operador de cambiar o limpiar el elemento filtrante antes de que abra la v&aacute;lvula de bypass que permite el paso de fluido contaminado a componentes aguas abajo del filtro.</p> <p class="rtejustify">T&iacute;picamente, el tiempo desde indicaci&oacute;n a flujo bypass oscila entre el 5 y el 15% de la vida &uacute;til del elemento. Por ejemplo, si el elemento tiene una vida &uacute;til de 100 d&iacute;as, el per&iacute;odo de gracia estar&iacute;a entre 5 y 15 d&iacute;as antes de los 100 para que el mismo empiece a pasar por bypass. Sin embargo, el elemento debe ser reemplazado apenas el indicador avise.</p> <p class="rtejustify">Configuraciones no est&aacute;ndar son utilizadas por razones espec&iacute;ficas. Por ejemplo, los filtros en sistemas de lubricaci&oacute;n puede que no puedan tener una ca&iacute;da de presi&oacute;n alta, por lo que el indicador deba ser ajustado para accionar a una presi&oacute;n por debajo de 15 psid. Cuando el filtro es instalado en la succi&oacute;n de una bomba hidr&aacute;ulica (lo cual no es recomendado), es normal limitar el delta p a trav&eacute;s del filtro a 3 psid y ajustar el indicador de acuerdo a esto. Con esta medida se previene la limitaci&oacute;n de flujo que luego causa cavitaci&oacute;n.</p> <p class="rtejustify">En la mayor&iacute;a de los casos, los elementos filtantes Hydac de presi&oacute;n y retorno fluyen en bypass a presiones m&aacute;s altas que las de otros fabricantes, por lo que el ajuste de los indicadores es m&aacute;s alta de lo normal. Con esto se obtiene una vida &uacute;til m&aacute;s alta.</p> <p class="rtejustify"><strong>Tipos de indicadores</strong></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%201_2.jpg" target="_self"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%201_2.jpg" style="width: 250px; height: 304px; margin: 10px; float: right;" title="Figura 2: Corte que muestra los componentes principales de un indicador diferencial tipo 1" /></a>Los filtros pueden ser pedidos con o sin indicadores. Cuando sea especificada la necesidad de uno, los ofrecidos por Hydac incluyen una letra en el c&oacute;digo, como B, C o D. Los de tipo B o BM (visuales), sirven para sistemas en lo que una advertencia local es suficiente. Para generar una se&ntilde;al remota conectada a una luz, panel de control, o PLC, un interruptor de presi&oacute;n electr&oacute;nico debe ser especificado. Existen varios tipos disponibles de acuerdo a la compatibilidad que se requiera (rango de se&ntilde;al el&eacute;ctrica, contactos y conexiones). El indicador tipo D viene con un interruptor incorporado y una luz permitiendo as&iacute; tanto una se&ntilde;al local como remota para el monitoreo.</p> <h2 class="rtejustify">&nbsp;</h2> <p class="rtejustify"><strong>Caracter&iacute;sticas Clave</strong></p> <p class="rtejustify"><strong>Reseteo manual o autom&aacute;tico &ndash; </strong>todos los indicadores Hydac con interruptores electr&oacute;nicos se resetean a su posici&oacute;n autom&aacute;ticamente cunado la ca&iacute;da de presi&oacute;n a trav&eacute;s del filtro cae por debajo de la presi&oacute;n de advertencia. Esto aplica para los indicadores de tipo B. Sin embargo, en indicadores de tipo BM con reseteo manual, el brazo de se&ntilde;al se extiende una vez que la presi&oacute;n de activaci&oacute;n es excedida y se mantiene en esta posici&oacute;n hasta que sea f&iacute;sicamente reseteado. La ventaja es que el indicador advierte que el elemento est&aacute; sucio, incluso cuando el sistema est&aacute; apagado, lo que simplifica las labores de mantenimiento.</p> <p class="rtejustify"><strong>Bloqueo t&eacute;rmico &ndash; </strong>cuando el equipo m&oacute;vil es arrancado en climas fr&iacute;os, el fluido hidr&aacute;ulico posiblemente presente una viscosidad muy alta hasta que alcance la temperatura normal de operaci&oacute;n. La alta ca&iacute;da de presi&oacute;n generada por un fluido altamente viscoso podr&iacute;a activar el indicador y falsamente indicar que el filtro est&aacute; tapado. La opci&oacute;n de incluir un dispositivo de bloqueo t&eacute;rmico, disponible en muchos de los indicadores electr&oacute;nicos ofrecidos, previene que el indicador de active hasta que el fluido alcance una temperatura espec&iacute;fica. El mismo consiste en un interruptor colocado en serie con el circuito del indicador, el cual es accionado por un cord&oacute;n bimetal que cambia su forma con la temperatura. Esta opci&oacute;n puede ser seleccionada de manera que el indicador sea desactivado a temperaturas por debajo de los 100 F +/- 5 grados. Como los indicadores electr&oacute;nicos se resetean autom&aacute;ticamente una vez que el fluido se calienta, el bloqueo t&eacute;rmico es &uacute;nicamente necesario cuando una falsa se&ntilde;al de condici&oacute;n del filtro en condiciones de arranque en fr&iacute;o represente un problema.</p> <p class="rtejustify"><strong>Interruptores de tipo SPDT (Unipolares de Doble Tiro) &ndash; </strong>la mayor&iacute;a de los indicadores de presi&oacute;n electr&oacute;nicos del mercado contienen interruptores unipolares de doble tiro (SPDT por sus siglas en ingl&eacute;s: Single Pole Double Throw). Los mismos pueden venir con contactos normalmente abiertos o normalmente cerrados, cuando el diferencial de presi&oacute;n se encuentre por debajo del punto de activaci&oacute;n. La selecci&oacute;n de cada uno se hace en base a los requerimientos del circuito de control.</p> <p class="rtejustify"><strong>Acoplamiento magn&eacute;tico &ndash; </strong>la mayor&iacute;a de los indicadores ofrecidos por Hydac utilizan un acoplamiento magn&eacute;tico que separa al dispositivo de accionamiento del fluido. El beneficio es que no existe la necesidad de la aplicaci&oacute;n de un sello din&aacute;mico, por lo que se reduce la probabilidad de que existan fugas a altas presiones.</p> <p class="rtejustify"><strong>Lineamientos de Aplicaci&oacute;n</strong></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%202_5.jpg" target="_self"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%202_5.jpg" style="width: 250px; height: 239px; margin: 10px; float: left;" title="Figura 3: Corte que muestra los componentes principales de un indicador diferencial tipo 2." /></a>Los <em>indicadores de presi&oacute;n diferencial</em> reaccionan a la ca&iacute;da de presi&oacute;n generada por el flujo a trav&eacute;s de la carcasa y elemento de un filtro. Lo hacen captando la diferencia entre la presi&oacute;n aguas arriba y abajo del filtro en cuesti&oacute;n, independientemente de la presi&oacute;n del sistema. Son utilizados en la mayor&iacute;a de los filtros de presi&oacute;n y retorno.</p> <p class="rtejustify">Los <em>indicadores de presi&oacute;n est&aacute;tica</em> solo miden la acumulaci&oacute;n de presi&oacute;n aguas arriba del elemento filtrante (la presi&oacute;n aguas abajo es ambiental &ndash; tanque). En consecuencia, si existen componentes instalados aguas abajo del filtro, el indicador medir&aacute; la ca&iacute;da de presi&oacute;n causada por el filtro y el componente, por lo que la lectura ser&aacute; falsa. Por ello, estos indicadores son solo recomendados para filtros que descargan directamente a tanque con un nivel m&iacute;nimo de contrapresi&oacute;n.</p> <p class="rtejustify">Un filtro que incorpore un sensor de presi&oacute;n diferencial debe ser utilizado siempre que haya resistencia al flujo significativa en la l&iacute;nea aguas abajo del filtro, incluso cuando la presi&oacute;n del sistema sea relativamente baja. Por ejemplo, el filtro en la l&iacute;nea de alimentaci&oacute;n de un sistema de lubricaci&oacute;n requiere un sensor de presi&oacute;n diferencial , a pesar que la presi&oacute;n del sistema es relativamente baja.</p> <p class="rtejustify"><strong>Operaci&oacute;n de un indicador Delta P</strong></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%203_0.jpg" target="_self"><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/HYDAC%20Type%203_0.jpg" style="width: 250px; height: 232px; margin: 10px; float: right;" title="Figura 3: Corte que muestra los componentes principales de un indicador diferencial tipo 3." /></a>A medida que la presi&oacute;n diferencial a trav&eacute;s de un filtro aumenta, un conjunto pist&oacute;n-im&aacute;n es accionado hacia abajo contra un resorte hasta que la fuerza de atracci&oacute;n entre el im&aacute;n y el pin indicador (tipo 1), o un interruptor con accionamiento de palanca (tipo 2) se reduce suficientemente como para permitir que el indicador se active. En un indicador visual (tipo 1), la activaci&oacute;n resulta en el levantamiento del pin, mostrando una indicaci&oacute;n visual de que se le debe hacer servicio al filtro. En un indicador electr&oacute;nico (tipo 2), la activaci&oacute;n hace que un interruptor se conecte o desconecte, lo que permite una indicaci&oacute;n remota que advierte sobre la necesidad de efectuar servicio. Cuando el diferencial de presi&oacute;n cae por debajo de la presi&oacute;n de activaci&oacute;n por cualquier raz&oacute;n (reemplazo del elemento filtrante, calentamiento del aceite, etc.), el conjunto pist&oacute;n / im&aacute;n regresa a su posici&oacute;n original.</p> <p class="rtejustify">Con un indicador visual, el pin podr&iacute;a responder de dos maneras: con un indicador con reseteo manual, &eacute;ste se mantiene extendido, incluso luego que el sistema se apaga y debe ser f&iacute;sicamente empujado a su posici&oacute;n original para resetearlo. Con reseteo autom&aacute;tico, el pin vuelve a su posici&oacute;n original junto con el pist&oacute;n. Con indicadores electr&oacute;nicos , el circuito es autom&aacute;ticamente reestablecido&nbsp; a su posici&oacute;n original, ya sea normalmente abierto o cerrado, una vez que la presi&oacute;n diferencial caiga por debajo del punto de activaci&oacute;n.</p> <p class="rtejustify"><strong>Indicadores de presi&oacute;n est&aacute;ticos</strong></p> <p class="rtejustify">Con indicadores de presi&oacute;n est&aacute;ticos, la presi&oacute;n aguas arriba del filtro act&uacute;a sobre un diafragma en el indicador (tipo 3) y causa que el pin de se&ntilde;alizaci&oacute;n se imponga contra una fuerza de resorte hasta que se active a una presi&oacute;n predeterminada. El pin indicador se resetea autom&aacute;ticamente una vez que la presi&oacute;n caiga por debajo de la de activaci&oacute;n. Los indicadores electr&oacute;nicos de presi&oacute;n est&aacute;tica, que tambi&eacute;n operan mec&aacute;nicamente, igualmente est&aacute;n disponibles y se resetean autom&aacute;ticamente.</p> <p class="rtejustify"><em>Adaptado de&nbsp;art&iacute;culo originalmente escrito por Jeff Ruth, Gerente de Producto en HYDAC Technology Corp.</em></p> <p class="rtejustify"><a href="/site-files/hydraulicspneumatics.com/files/uploads/2016/08/01/SP7050-0-08-12_VA-Katalogversion_web.pdf">Seleccione aqu&iacute;</a> para descargar el cat&aacute;logo de indicadores de HYDAC.</p> <p style="font-size: 15px; line-height: 1.48em; color: rgb(51, 51, 51); font-family: Georgia, Times, &quot;Times New Roman&quot;, serif;"><i style="font-size: 15px; line-height: 22.2px;">Ricardo Sol&oacute;rzano&nbsp;se desempe&ntilde;a como Director General de EEM Technologies Corp., un proveedor de soluciones en Hidr&aacute;ulica, Neum&aacute;tica y Automatizaci&oacute;n Industrial para los mercados de Centro, Sur Am&eacute;rica y El Caribe. Para mayor informaci&oacute;n lo puede contactar al: &nbsp;+1(855)462-7633,<a href="mailto:rsolorzano@eemtechnologies.com" style="color: rgb(14, 95, 139);">rsolorzano@eemtechnologies.com</a>,&nbsp;<a href="http://www.eemtechnologies.com/" style="color: rgb(14, 95, 139);">www.eemtechnologies.com</a>.</i></p> <p style="font-size: 15px; line-height: 1.48em; color: rgb(51, 51, 51); font-family: Georgia, Times, &quot;Times New Roman&quot;, serif;"><i style="font-size: 15px; line-height: 22.2px;">&iquest;Necesita elementos filtrantes o acumuladores y vejigas? Visite la tienda virtual de&nbsp;<a href="https://eem-eshop.myshopify.com/" style="color: rgb(14, 95, 139);">EEM eShop</a>, 24/7, amplio stock.</i></p> </div> http://hydraulicspneumatics.com/blog/f-cil-monitoreo-de-las-condiciones-de-contaminaci-n#comments Fluid Cleanliness Controls & Instrumentation H&amp;P en tu idioma! Mon, 01 Aug 2016 14:15:00 +0000 39451 at http://hydraulicspneumatics.com <p>Indicadores de Contaminaci&oacute;n HYDAC</p> Improving The Reliability of Hydraulic Cylinder Position Sensors http://hydraulicspneumatics.com/cylinders-actuators/improving-reliability-hydraulic-cylinder-position-sensors <div class="field-deck"> Sponsored by Balluff </div> <div class="node-body article-body"><p><img alt="" src="/site-files/hydraulicspneumatics.com/files/uploads/2016/06/Balluff_Logo-262x50.gif" style="width: 200px; height: 38px; float: right;" />Today&#39;s highly demanding industrial applications for linear position sensors in hydraulic cylinders sometimes exceed the limits of survivability for standard product designs. Heat, extreme cold, physical impact, shock, vibration, liquid ingress, corrosion, and other challenges can lead to premature sensor failure and unsatisfactory service life. Advances in specialized sensor designs and consideration for current best practices in application engineering can enhance sensor reliability and extend life expectancy in these harsh operating environments.&nbsp;</p> <script type="text/javascript"> document.write('\ <iframe style="height:685px; width: 600px" frameBorder="0" scrolling="no"\ src="http://pages.hydraulicspneumatics.com/HP_Digital_Balluff_HydraCylinSensor_WP_DC_072516?partnerref=' + getParameterByName("partnerref") + "&elq=" + getParameterByName("elq2") + "&code=" + getParameterByName("code") + "&PK=" + getParameterByName("PK") + "&PR=" + getParameterByName("PR") + '"></iframe>'); function getParameterByName(name) { var match = RegExp('[?&]' + name + '=([^&]*)').exec(window.location.search); if (match == null) return ""; return match && decodeURIComponent(match[1].replace(/\+/g, ' ')); } </script></div> http://hydraulicspneumatics.com/cylinders-actuators/improving-reliability-hydraulic-cylinder-position-sensors#comments White Papers Cylinders & Actuators Fri, 29 Jul 2016 19:57:00 +0000 39361 at http://hydraulicspneumatics.com